skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

Abstract

A novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.

Authors:
 [1];  [2];  [3];  [1];  [4];  [1];  [1];  [5]; ORCiD logo [6]
  1. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Biological Engineering
  2. Univ. of Cambridge (United Kingdom). Melville Lab. for Polymer Synthesis, Dept. of Chemistry
  3. City Univ. of Hong Kong, Hong Kong (China). Joint Lab. for Energy and Environmental Catalysis School of Energy and Environment
  4. Monash Univ., Melbourne, VIC (Australia). Dept. of Mechanical and Aerospace Engineering
  5. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.
  6. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Biological Engineering; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1464182
Alternate Identifier(s):
OSTI ID: 1422236
Report Number(s):
SAND-2017-12256J
Journal ID: ISSN 1616-301X; 658659; TRN: US1902370
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 16; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; metal-organic framework; surface functionalization; metal-phenolic coordination; interfacial assembly; bioapplication

Citation Formats

Zhu, Wei, Xiang, Guolei, Shang, Jin, Guo, Jimin, Motevalli, Benyamin, Durfee, Paul, Agola, Jacob Ongudi, Coker, Eric N., and Brinker, C. Jeffrey. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications. United States: N. p., 2018. Web. doi:10.1002/adfm.201705274.
Zhu, Wei, Xiang, Guolei, Shang, Jin, Guo, Jimin, Motevalli, Benyamin, Durfee, Paul, Agola, Jacob Ongudi, Coker, Eric N., & Brinker, C. Jeffrey. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications. United States. doi:10.1002/adfm.201705274.
Zhu, Wei, Xiang, Guolei, Shang, Jin, Guo, Jimin, Motevalli, Benyamin, Durfee, Paul, Agola, Jacob Ongudi, Coker, Eric N., and Brinker, C. Jeffrey. Thu . "Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications". United States. doi:10.1002/adfm.201705274. https://www.osti.gov/servlets/purl/1464182.
@article{osti_1464182,
title = {Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications},
author = {Zhu, Wei and Xiang, Guolei and Shang, Jin and Guo, Jimin and Motevalli, Benyamin and Durfee, Paul and Agola, Jacob Ongudi and Coker, Eric N. and Brinker, C. Jeffrey},
abstractNote = {A novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.},
doi = {10.1002/adfm.201705274},
journal = {Advanced Functional Materials},
number = 16,
volume = 28,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: A) Schematic illustration of the surface functionalization of MOF particles by phase transfer reactions; B) Periodic table: metal ions highlighted in orange are used to form the related MOF particles with different shapes and porosities; C) SEM images of the DPGG-modified MOF particles; scale bar =1 µm.

Save / Share:

Works referenced in this record:

Selective Bifunctional Modification of a Non-catenated Metal−Organic Framework Material via “Click” Chemistry
journal, September 2009

  • Gadzikwa, Tendai; Farha, Omar K.; Malliakas, Christos D.
  • Journal of the American Chemical Society, Vol. 131, Issue 38, p. 13613-13615
  • DOI: 10.1021/ja904189d

Applications of metal-organic frameworks featuring multi-functional sites
journal, January 2016


Covalent surface modification of a metal–organic framework: selective surface engineering via CuI-catalyzed Huisgen cycloaddition
journal, January 2008

  • Gadzikwa, Tendai; Lu, Guang; Stern, Charlotte L.
  • Chemical Communications, Issue 43
  • DOI: 10.1039/b805101a

Colloidal-Sized Metal–Organic Frameworks: Synthesis and Applications
journal, December 2013

  • Sindoro, Melinda; Yanai, Nobuhiro; Jee, Ah-Young
  • Accounts of Chemical Research, Vol. 47, Issue 2
  • DOI: 10.1021/ar400151n

Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging
journal, December 2009

  • Horcajada, Patricia; Chalati, Tamim; Serre, Christian
  • Nature Materials, Vol. 9, Issue 2
  • DOI: 10.1038/nmat2608

Post-synthetic metalation of metal–organic frameworks
journal, January 2014

  • Evans, Jack D.; Sumby, Christopher J.; Doonan, Christian J.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00076E

Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials
journal, August 2010

  • Farha, Omar K.; Hupp, Joseph T.
  • Accounts of Chemical Research, Vol. 43, Issue 8, p. 1166-1175
  • DOI: 10.1021/ar1000617

Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives
journal, March 2017

  • Lismont, Marjorie; Dreesen, Laurent; Wuttke, Stefan
  • Advanced Functional Materials, Vol. 27, Issue 14
  • DOI: 10.1002/adfm.201606314

Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces
journal, February 2017


Nature's Other Self-Assemblers
journal, July 2013


Hydrogen storage in metal–organic frameworks
journal, January 2009

  • Murray, Leslie J.; Dincă, Mircea; Long, Jeffrey R.
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1294-1314
  • DOI: 10.1039/b802256a

Directional Self-Assembly of a Colloidal Metal-Organic Framework
journal, April 2012

  • Yanai, Nobuhiro; Granick, Steve
  • Angewandte Chemie International Edition, Vol. 51, Issue 23
  • DOI: 10.1002/anie.201109132

Methyl modified MOF-5: a water stable hydrogen storage material
journal, January 2011

  • Yang, Jie; Grzech, Anna; Mulder, Fokko M.
  • Chemical Communications, Vol. 47, Issue 18
  • DOI: 10.1039/c1cc11054c

One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering
journal, July 2013


Controlled Fabrication of Functional Capsules Based on the Synergistic Interaction between Polyphenols and MOFs under Weak Basic Condition
journal, April 2017

  • Wang, Hui; Zhu, Wei; Ping, Yuan
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 16
  • DOI: 10.1021/acsami.7b01788

Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery
journal, October 2011

  • Della Rocca, Joseph; Liu, Demin; Lin, Wenbin
  • Accounts of Chemical Research, Vol. 44, Issue 10, p. 957-968
  • DOI: 10.1021/ar200028a

Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement
journal, January 2014

  • Deria, Pravas; Mondloch, Joseph E.; Karagiaridi, Olga
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00067F

Zr-Based MOFs Shielded with Phospholipid Bilayers: Improved Biostability and Cell Uptake for Biological Applications
journal, May 2017


Enantioselective catalysis with homochiral metal–organic frameworks
journal, January 2009

  • Ma, Liqing; Abney, Carter; Lin, Wenbin
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1248-1256
  • DOI: 10.1039/b807083k

Copper Nanocrystals Encapsulated in Zr-based Metal–Organic Frameworks for Highly Selective CO 2 Hydrogenation to Methanol
journal, November 2016


Revealing the Interfacial Self-Assembly Pathway of Large-Scale, Highly-Ordered, Nanoparticle/Polymer Monolayer Arrays at an Air/Water Interface
journal, February 2013

  • Xiong, Shisheng; Dunphy, Darren R.; Wilkinson, Dan C.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304253y

Bio-functionalization of metal–organic frameworks by covalent protein conjugation
journal, January 2011

  • Jung, Suhyun; Kim, Youngmee; Kim, Sung-Jin
  • Chemical Communications, Vol. 47, Issue 10
  • DOI: 10.1039/c0cc03288c

Moisture-Resistant and Superhydrophobic Metal−Organic Frameworks Obtained via Postsynthetic Modification
journal, April 2010

  • Nguyen, Joseph G.; Cohen, Seth M.
  • Journal of the American Chemical Society, Vol. 132, Issue 13
  • DOI: 10.1021/ja100900c

Mussel-Inspired Surface Chemistry for Multifunctional Coatings
journal, October 2007


Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis
journal, May 2009

  • Hong, Do-Young; Hwang, Young Kyu; Serre, Christian
  • Advanced Functional Materials, Vol. 19, Issue 10
  • DOI: 10.1002/adfm.200801130

Protocells: Modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery
journal, January 2016

  • Butler, Kimberly S.; Durfee, Paul N.; Theron, Christophe
  • Small, Vol. 12, Issue 16
  • DOI: 10.1002/smll.201502119

Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells
journal, July 2016


Metal–Organic Framework Thin Films: From Fundamentals to Applications.
journal, September 2011

  • Bétard, Angélique; Fischer, Roland A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1055-1083
  • DOI: 10.1021/cr200167v

Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies
journal, October 2013

  • Deria, Pravas; Mondloch, Joseph E.; Tylianakis, Emmanuel
  • Journal of the American Chemical Society, Vol. 135, Issue 45, p. 16801-16804
  • DOI: 10.1021/ja408959g

Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications
journal, February 2017


Engineering Multifunctional Capsules through the Assembly of Metal-Phenolic Networks
journal, April 2014

  • Guo, Junling; Ping, Yuan; Ejima, Hirotaka
  • Angewandte Chemie International Edition, Vol. 53, Issue 22
  • DOI: 10.1002/anie.201311136

Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks
journal, September 2011

  • Cohen, Seth M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 970-1000
  • DOI: 10.1021/cr200179u

The surface chemistry of metal–organic frameworks
journal, January 2015

  • McGuire, Christina V.; Forgan, Ross S.
  • Chemical Communications, Vol. 51, Issue 25
  • DOI: 10.1039/C4CC04458D

Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates
journal, May 2014

  • Morris, William; Briley, William E.; Auyeung, Evelyn
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja503215w

Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation
journal, May 2008

  • Hwang, Young Kyu; Hong, Do-Young; Chang, Jong-San
  • Angewandte Chemie International Edition, Vol. 47, Issue 22, p. 4144-4148
  • DOI: 10.1002/anie.200705998

Postsynthetic modification of metal–organic frameworks
journal, January 2009

  • Wang, Zhenqiang; Cohen, Seth M.
  • Chemical Society Reviews, Vol. 38, Issue 5
  • DOI: 10.1039/b802258p

Surface-Specific Functionalization of Nanoscale Metal-Organic Frameworks
journal, October 2015

  • Wang, Shunzhi; Morris, William; Liu, Yangyang
  • Angewandte Chemie International Edition, Vol. 54, Issue 49
  • DOI: 10.1002/anie.201506888

Chemistry of SURMOFs: Layer-Selective Installation of Functional Groups and Post-synthetic Covalent Modification Probed by Fluorescence Microscopy
journal, February 2011

  • Liu, Bo; Ma, Mingyan; Zacher, Denise
  • Journal of the American Chemical Society, Vol. 133, Issue 6
  • DOI: 10.1021/ja1109826

Liposome-Coated Iron Fumarate Metal-Organic Framework Nanoparticles for Combination Therapy
journal, October 2017

  • Illes, Bernhard; Wuttke, Stefan; Engelke, Hanna
  • Nanomaterials, Vol. 7, Issue 11
  • DOI: 10.3390/nano7110351

Modular assembly of superstructures from polyphenol-functionalized building blocks
journal, October 2016

  • Guo, Junling; Tardy, Blaise L.; Christofferson, Andrew J.
  • Nature Nanotechnology, Vol. 11, Issue 12
  • DOI: 10.1038/nnano.2016.172

Pore Surface Engineering with Controlled Loadings of Functional Groups via Click Chemistry in Highly Stable Metal–Organic Frameworks
journal, August 2012

  • Jiang, Hai-Long; Feng, Dawei; Liu, Tian-Fu
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja3063919

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Coordinatively Immobilized Monolayers on Porous Coordination Polymer Crystals
journal, June 2010

  • Kondo, Mio; Furukawa, Shuhei; Hirai, Kenji
  • Angewandte Chemie International Edition, Vol. 49, Issue 31
  • DOI: 10.1002/anie.201001063

Nanostructured metal–organic frameworks and their bio-related applications
journal, January 2016


Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility
journal, July 2012

  • Tarn, Derrick; Ashley, Carlee E.; Xue, Min
  • Accounts of Chemical Research, Vol. 46, Issue 3
  • DOI: 10.1021/ar3000986

MOF positioning technology and device fabrication
journal, January 2014

  • Falcaro, Paolo; Ricco, Raffaele; Doherty, Cara M.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00089G

Imparting Functionality to MOF Nanoparticles by External Surface Selective Covalent Attachment of Polymers
journal, May 2016


The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Exosome-Coated Metal–Organic Framework Nanoparticles: An Efficient Drug Delivery Platform
journal, September 2017


Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials
journal, August 2013

  • Wang, Cheng; Liu, Demin; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 135, Issue 36
  • DOI: 10.1021/ja308229p

MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells
journal, January 2015

  • Wuttke, Stefan; Braig, Simone; Preiß, Tobias
  • Chemical Communications, Vol. 51, Issue 87
  • DOI: 10.1039/C5CC06767G

Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites
journal, September 2011

  • Stock, Norbert; Biswas, Shyam
  • Chemical Reviews, Vol. 112, Issue 2
  • DOI: 10.1021/cr200304e

Colorless Multifunctional Coatings Inspired by Polyphenols Found in Tea, Chocolate, and Wine
journal, August 2013

  • Sileika, Tadas S.; Barrett, Devin G.; Zhang, Ran
  • Angewandte Chemie International Edition, Vol. 52, Issue 41
  • DOI: 10.1002/anie.201304922

Multifunctional Nanoparticles by Coordinative Self-Assembly of His-Tagged Units with Metal–Organic Frameworks
journal, February 2017

  • Röder, Ruth; Preiß, Tobias; Hirschle, Patrick
  • Journal of the American Chemical Society, Vol. 139, Issue 6
  • DOI: 10.1021/jacs.6b11934

Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals
journal, October 2015

  • Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau
  • Angewandte Chemie International Edition, Vol. 54, Issue 48
  • DOI: 10.1002/anie.201507588

Void Engineering in Metal-Organic Frameworks via Synergistic Etching and Surface Functionalization
journal, June 2016


    Works referencing / citing this record:

    DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy
    journal, January 2019

    • Chen, Xiangyu; Yi, Zeng; Chen, Guangcan
    • Journal of Materials Chemistry B, Vol. 7, Issue 25
    • DOI: 10.1039/c9tb00751b

    DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy
    journal, January 2019

    • Chen, Xiangyu; Yi, Zeng; Chen, Guangcan
    • Journal of Materials Chemistry B, Vol. 7, Issue 25
    • DOI: 10.1039/c9tb00751b