DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing the microhydration of metal carbonyls: a photoelectron velocity-map imaging spectroscopic and theoretical study of Ni(CO)3(H2O)n

Abstract

A series of microhydrated nickel carbonyls, Ni(CO)3(H2O)n (n = 0–4), are prepared via a laser vaporization supersonic cluster source in the gas phase and identified by mass-selected photoelectron velocity-map imaging spectroscopy and quantum chemical calculations. Vertical detachment energies for the n = 1–4 anions are measured from the photoelectron spectra to be 1.429 ± 0.103, 1.698 ± 0.090, 1.887 ± 0.080, and 2.023 ± 0.074 eV, respectively. The C–O stretching vibrational frequencies in the corresponding neutral clusters are determined to be 1968, 1950, 1945, and 1940 cm–1 for n = 1–4, respectively, which are characteristic of terminal CO. It is determined that the hydrogen atom of the first water molecule is bound to the nickel center. Addition of a second water molecule prefers solvation at the carbonyl terminal. Spectroscopy combined with theory suggests that the solvation of nickel tricarbonyl is dominated by a water-ring network. Here, the present findings would have important implications for the fundamental understanding of the multifaceted mechanisms of the multibody interaction of water and carbon monoxide with transition metals.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1]
  1. Chinese Academy of Sciences, Dalian (People's Republic of China)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1464132
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP
Additional Journal Information:
Journal Volume: 18; Journal Issue: 38; Related Information: © 2016 the Owner Societies.; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Xie, Hua, Zou, Jinghan, Kong, Xiangtao, Zhang, Weiqing, Ahmed, Musahid, and Jiang, Ling. Probing the microhydration of metal carbonyls: a photoelectron velocity-map imaging spectroscopic and theoretical study of Ni(CO)3(H2O)n–. United States: N. p., 2016. Web. doi:10.1039/c6cp05035b.
Xie, Hua, Zou, Jinghan, Kong, Xiangtao, Zhang, Weiqing, Ahmed, Musahid, & Jiang, Ling. Probing the microhydration of metal carbonyls: a photoelectron velocity-map imaging spectroscopic and theoretical study of Ni(CO)3(H2O)n–. United States. https://doi.org/10.1039/c6cp05035b
Xie, Hua, Zou, Jinghan, Kong, Xiangtao, Zhang, Weiqing, Ahmed, Musahid, and Jiang, Ling. Fri . "Probing the microhydration of metal carbonyls: a photoelectron velocity-map imaging spectroscopic and theoretical study of Ni(CO)3(H2O)n–". United States. https://doi.org/10.1039/c6cp05035b. https://www.osti.gov/servlets/purl/1464132.
@article{osti_1464132,
title = {Probing the microhydration of metal carbonyls: a photoelectron velocity-map imaging spectroscopic and theoretical study of Ni(CO)3(H2O)n–},
author = {Xie, Hua and Zou, Jinghan and Kong, Xiangtao and Zhang, Weiqing and Ahmed, Musahid and Jiang, Ling},
abstractNote = {A series of microhydrated nickel carbonyls, Ni(CO)3(H2O)n– (n = 0–4), are prepared via a laser vaporization supersonic cluster source in the gas phase and identified by mass-selected photoelectron velocity-map imaging spectroscopy and quantum chemical calculations. Vertical detachment energies for the n = 1–4 anions are measured from the photoelectron spectra to be 1.429 ± 0.103, 1.698 ± 0.090, 1.887 ± 0.080, and 2.023 ± 0.074 eV, respectively. The C–O stretching vibrational frequencies in the corresponding neutral clusters are determined to be 1968, 1950, 1945, and 1940 cm–1 for n = 1–4, respectively, which are characteristic of terminal CO. It is determined that the hydrogen atom of the first water molecule is bound to the nickel center. Addition of a second water molecule prefers solvation at the carbonyl terminal. Spectroscopy combined with theory suggests that the solvation of nickel tricarbonyl is dominated by a water-ring network. Here, the present findings would have important implications for the fundamental understanding of the multifaceted mechanisms of the multibody interaction of water and carbon monoxide with transition metals.},
doi = {10.1039/c6cp05035b},
journal = {Physical Chemistry Chemical Physics. PCCP},
number = 38,
volume = 18,
place = {United States},
year = {Fri Sep 02 00:00:00 EDT 2016},
month = {Fri Sep 02 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spectroscopic and Theoretical Investigations of Vibrational Frequencies in Binary Unsaturated Transition-Metal Carbonyl Cations, Neutrals, and Anions
journal, July 2001

  • Zhou, Mingfei; Andrews, Lester; Bauschlicher, Charles W.
  • Chemical Reviews, Vol. 101, Issue 7
  • DOI: 10.1021/cr990102b

Matrix Infrared Spectra and Density Functional Calculations of Ni(CO) x - , x = 1−3
journal, November 1998

  • Zhou, Mingfei; Andrews, Lester
  • Journal of the American Chemical Society, Vol. 120, Issue 44
  • DOI: 10.1021/ja9820644

Metal (iron and nickel) carbonyl bond strengths in Fe(CO)n- and Ni(CO)n-
journal, April 1992

  • Sunderlin, L. S.; Wang, Dingneng; Squires, Robert R.
  • Journal of the American Chemical Society, Vol. 114, Issue 8
  • DOI: 10.1021/ja00034a004

Infrared spectroscopy of mass-selected metal carbonyl cations
journal, April 2011

  • Ricks, A. M.; Reed, Z. E.; Duncan, M. A.
  • Journal of Molecular Spectroscopy, Vol. 266, Issue 2
  • DOI: 10.1016/j.jms.2011.03.006

Infrared spectra and density functional calculations of Cu(CO)1–4+, Cu(CO)1–3, and Cu(CO)1–3− in solid neon
journal, September 1999

  • Zhou, Mingfei; Andrews, Lester
  • The Journal of Chemical Physics, Vol. 111, Issue 10
  • DOI: 10.1063/1.479216

The Effect of Charge on CO Binding in Rhodium Carbonyls:  From Bridging to Terminal CO
journal, February 2008

  • Swart, Ingmar; de Groot, Frank M. F.; Weckhuysen, Bert M.
  • Journal of the American Chemical Society, Vol. 130, Issue 7
  • DOI: 10.1021/ja0772795

Infrared Spectra of the (AgCO) 2 and Ag n CO ( n = 2−4) Molecules in Rare-Gas Matrices
journal, October 2006

  • Jiang, Ling; Xu, Qiang
  • The Journal of Physical Chemistry A, Vol. 110, Issue 40
  • DOI: 10.1021/jp064129s

Unique CO Chemisorption Properties of Gold Hexamer:  Au 6 (CO) n - ( n = 0−3)
journal, August 2005

  • Zhai, Hua-Jin; Kiran, Boggavarapu; Dai, Bing
  • Journal of the American Chemical Society, Vol. 127, Issue 34
  • DOI: 10.1021/ja052618k

Collinear Velocity-map Photoelectron Imaging Spectrometer for Cluster Anions
journal, August 2010


Vibrational Spectroscopy of Microhydrated Conjugate Base Anions
journal, June 2011

  • Asmis, Knut R.; Neumark, Daniel M.
  • Accounts of Chemical Research, Vol. 45, Issue 1
  • DOI: 10.1021/ar2000748

Solvation Dynamics in Ni + (H 2 O) n Clusters Probed with Infrared Spectroscopy
journal, November 2005

  • Walters, Richard S.; Pillai, E. Dinesh; Duncan, Michael A.
  • Journal of the American Chemical Society, Vol. 127, Issue 47
  • DOI: 10.1021/ja0542587

Metal-Centered 17-Electron Radicals CpM(CO) 3 (M = Cr, Mo, W): A Combined Negative Ion Photoelectron Spectroscopic and Theoretical Study
journal, March 2013

  • Eide, Edwin F. van der; Hou, Gao-Lei; Deng, S. H. M.
  • Organometallics, Vol. 32, Issue 7
  • DOI: 10.1021/om3011454

Gas-Phase Vibrational Spectroscopy of Microhydrated Magnesium Nitrate Ions [MgNO 3 (H 2 O) 1−4 ] +
journal, June 2010

  • Jiang, Ling; Wende, Torsten; Bergmann, Risshu
  • Journal of the American Chemical Society, Vol. 132, Issue 21
  • DOI: 10.1021/ja1011806

Oxidation of Carbon Monoxide on Group 11 Metal Atoms:  Matrix-Isolation Infrared Spectroscopic and Density Functional Theory Study
journal, March 2006

  • Xu, Qiang; Jiang, Ling
  • The Journal of Physical Chemistry A, Vol. 110, Issue 8
  • DOI: 10.1021/jp055155d

Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls
journal, January 2000

  • Spasov, Vassil A.; Lee, Taeck-Hong; Ervin, Kent M.
  • The Journal of Chemical Physics, Vol. 112, Issue 4
  • DOI: 10.1063/1.480736

Chemisorption-induced Structural Changes and Transition from Chemisorption to Physisorption in Au 6 (CO) n ( n = 4−9)
journal, July 2008

  • Zhai, Hua-Jin; Pan, Li-Li; Dai, Bing
  • The Journal of Physical Chemistry C, Vol. 112, Issue 31
  • DOI: 10.1021/jp803161b

Microhydrated dihydrogen phosphate clusters probed by gas phase vibrational spectroscopy and first principles calculations
journal, January 2015

  • Sun, Shou-Tian; Jiang, Ling; Liu, J. W.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 39
  • DOI: 10.1039/C5CP02253C

Cryogenic Ion Chemistry and Spectroscopy
journal, August 2013

  • Wolk, Arron B.; Leavitt, Christopher M.; Garand, Etienne
  • Accounts of Chemical Research, Vol. 47, Issue 1
  • DOI: 10.1021/ar400125a

The adsorption of CO on transition metal clusters: A case study of cluster surface chemistry
journal, June 2009

  • Fielicke, André; Gruene, Philipp; Meijer, Gerard
  • Surface Science, Vol. 603, Issue 10-12, p. 1427-1433
  • DOI: 10.1016/j.susc.2008.09.064

Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen
journal, September 1997

  • Eppink, André T. J. B.; Parker, David H.
  • Review of Scientific Instruments, Vol. 68, Issue 9
  • DOI: 10.1063/1.1148310

The Nature of the Bonding in Transition-Metal Compounds
journal, February 2000

  • Frenking, Gernot; Fröhlich, Nikolaus
  • Chemical Reviews, Vol. 100, Issue 2
  • DOI: 10.1021/cr980401l

Vibrationally Resolved Photoelectron Spectroscopy of Di-Gold Carbonyl Clusters Au 2 (CO) n ( n = 1−3): Experiment and Theory
journal, January 2010

  • Wang, Yi-Lei; Zhai, Hua-Jin; Xu, Lu
  • The Journal of Physical Chemistry A, Vol. 114, Issue 3
  • DOI: 10.1021/jp903558v

Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters
journal, June 2013


The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters
journal, January 2008

  • Gruene, Philipp; Fielicke, André; Meijer, Gerard
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 40
  • DOI: 10.1039/b808341j

Laser photoelectron spectrometry of Ni(CO)n-, n = 1-3
journal, September 1982

  • Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.
  • Journal of the American Chemical Society, Vol. 104, Issue 19
  • DOI: 10.1021/ja00383a004

Chemisorption-Induced 2D–3D–2D Structural Transitions in Gold Heptamer: (CO) n Au 7 ( n = 1–4)
journal, August 2011

  • Pal, Rhitankar; Huang, Wei; Wang, Yi-Lei
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 18
  • DOI: 10.1021/jz201023q

Sequential Bond Energies of Cu(CO)x+ and Ag(CO)x+ (x = 1-4)
journal, April 1995

  • Meyer, Franc; Chen, Yu-Min; Armentrout, P. B.
  • Journal of the American Chemical Society, Vol. 117, Issue 14
  • DOI: 10.1021/ja00119a023

Size and charge effects on the binding of CO to late transition metal clusters
journal, May 2006

  • Fielicke, André; von Helden, Gert; Meijer, Gerard
  • The Journal of Chemical Physics, Vol. 124, Issue 19
  • DOI: 10.1063/1.2196887

Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry
journal, December 2014


Works referencing / citing this record:

Sulfur substitution in a Ni(cyclam) derivative results in lower overpotential for CO 2 reduction and enhanced proton reduction
journal, January 2019

  • Gerschel, P.; Warm, K.; Farquhar, E. R.
  • Dalton Transactions, Vol. 48, Issue 18
  • DOI: 10.1039/c8dt04740e