skip to main content


This content will become publicly available on March 8, 2019

Title: Dimensional control of defect dynamics in perovskite oxide superlattices

Point defects play a critical role in the structural, physical, and interfacial properties of perovskite oxide superlattices. However, understanding of the fundamental properties of point defects in superlattices, especially their transport properties, is rather limited. Here, we report predictions of the stability and dynamics of oxygen vacancies in SrTiO 3/PbTiO 3 oxide superlattices using first-principles calculations in combination with the kinetic Monte Carlo method. By varying the stacking period, i.e., changing of n in nSTO/ nPTO, we discover a crossover from three-dimensional diffusion to primarily two-dimensional planar diffusion. Such planar diffusion may lead to novel designs of ionic conductors. We show that the dominant vacancy position may vary in the superlattices, depending on the superlattice structure and stacking period, contradicting the common assumption that point defects reside at interfaces. Moreover, we predict a significant increase in room-temperature ionic conductivity for 3STO/3PTO relative to the bulk phases. As a result, considering the variety of cations that can be accommodated in perovskite superlattices and the potential mismatch of spin, charge, and orbitals at the interfaces, this paper identifies a pathway to control defect dynamics for technological applications.
 [1] ;  [1] ; ORCiD logo [2] ; ORCiD logo [2] ;  [3]
  1. The Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725; AC02-05CH11231; AC05- 00OR22725
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 3; Journal ID: ISSN 2475-9953
American Physical Society (APS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1424810