skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analytical and numerical study of the transverse Kelvin–Helmholtz instability in tokamak edge plasmas

Abstract

Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin–Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared $$\boldsymbol{E}\times \boldsymbol{B}$$ flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summary that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at, and just outside of, the separatrix as a result of the distribution of magnetic shear. Finally implications for reduced edge turbulence modelling codes are discussed.

Authors:
 [1];  [1];  [1];  [2];  [1]
  1. Lodestar Research Corporation, Boulder, CO (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lodestar Research Corp., Boulder, CO (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Contributing Org.:
Lodestar Research Corporation Lawrence Livermore National Lab.
OSTI Identifier:
1463839
Alternate Identifier(s):
OSTI ID: 1248339
Report Number(s):
LLNL-JRNL-737835; LRC-16-164
Journal ID: ISSN 0022-3778; applab; 890878; TRN: US1902332
Grant/Contract Number:  
AC52-07NA27344; FG02-97ER54392
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Plasma Physics
Additional Journal Information:
Journal Volume: 82; Journal Issue: 02; Journal ID: ISSN 0022-3778
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; plasma instabilities; Kelvin-Helmholtz; spherical torus

Citation Formats

Myra, J. R., D’Ippolito, D. A., Russell, D. A., Umansky, M. V., and Baver, D. A. Analytical and numerical study of the transverse Kelvin–Helmholtz instability in tokamak edge plasmas. United States: N. p., 2016. Web. doi:10.1017/S0022377816000301.
Myra, J. R., D’Ippolito, D. A., Russell, D. A., Umansky, M. V., & Baver, D. A. Analytical and numerical study of the transverse Kelvin–Helmholtz instability in tokamak edge plasmas. United States. doi:10.1017/S0022377816000301.
Myra, J. R., D’Ippolito, D. A., Russell, D. A., Umansky, M. V., and Baver, D. A. Mon . "Analytical and numerical study of the transverse Kelvin–Helmholtz instability in tokamak edge plasmas". United States. doi:10.1017/S0022377816000301. https://www.osti.gov/servlets/purl/1463839.
@article{osti_1463839,
title = {Analytical and numerical study of the transverse Kelvin–Helmholtz instability in tokamak edge plasmas},
author = {Myra, J. R. and D’Ippolito, D. A. and Russell, D. A. and Umansky, M. V. and Baver, D. A.},
abstractNote = {Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin–Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared $\boldsymbol{E}\times \boldsymbol{B}$ flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summary that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at, and just outside of, the separatrix as a result of the distribution of magnetic shear. Finally implications for reduced edge turbulence modelling codes are discussed.},
doi = {10.1017/S0022377816000301},
journal = {Journal of Plasma Physics},
number = 02,
volume = 82,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

On the magnetohydrodynamic Kelvin–Helmholtz instability driven by a nonuniform ion drift
journal, October 2002

  • Vranješ, J.; Tanaka, M. Y.
  • Physics of Plasmas, Vol. 9, Issue 10
  • DOI: 10.1063/1.1502256

Noncurvature-driven modes in a transport barrier
journal, June 2005

  • Rogers, B. N.; Dorland, W.
  • Physics of Plasmas, Vol. 12, Issue 6
  • DOI: 10.1063/1.1928250

Kelvin–Helmholtz instability and vortices in magnetized plasma
journal, January 1987

  • Horton, W.; Tajima, T.; Kamimura, T.
  • Physics of Fluids, Vol. 30, Issue 11
  • DOI: 10.1063/1.866429

Influence of equilibrium shear flow on peeling-ballooning instability and edge localized mode crash
journal, September 2012

  • Xi, P. W.; Xu, X. Q.; Wang, X. G.
  • Physics of Plasmas, Vol. 19, Issue 9
  • DOI: 10.1063/1.4751256

Three‐dimensional fluid simulations of the nonlinear drift‐resistive ballooning modes in tokamak edge plasmas
journal, October 1993

  • Guzdar, P. N.; Drake, J. F.; McCarthy, D.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 10
  • DOI: 10.1063/1.860842

Instabilities driven by the parallel variation of the electrostatic potential in tandem mirrors
journal, January 1982


Plasma turbulence in the scrape-off layer of tokamak devices
journal, January 2013

  • Ricci, Paolo; Rogers, B. N.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4789551

Linear eigenvalue code for edge plasma in full tokamak X-point geometry
journal, August 2011

  • Baver, D. A.; Myra, J. R.; Umansky, M. V.
  • Computer Physics Communications, Vol. 182, Issue 8
  • DOI: 10.1016/j.cpc.2011.04.007

Edge instability regimes with applications to blob transport and the quasicoherent mode
journal, September 2005

  • Myra, J. R.; D’Ippolito, D. A.
  • Physics of Plasmas, Vol. 12, Issue 9
  • DOI: 10.1063/1.2048847

Kelvin—Helmholtz Instability in a Fully Ionized Plasma in a Magnetic Field
journal, January 1965


Instability due to axial shear and surface impedance
journal, May 1994

  • Tsidulko, Yu. A.; Berk, H. L.; Cohen, Ronald H.
  • Physics of Plasmas, Vol. 1, Issue 5
  • DOI: 10.1063/1.870717

Recent theoretical progress in understanding coherent structures in edge and SOL turbulence
journal, October 2008

  • Krasheninnikov, S. I.; D'Ippolito, D. A.; Myra, J. R.
  • Journal of Plasma Physics, Vol. 74, Issue 5
  • DOI: 10.1017/S0022377807006940

Exploration of spherical torus physics in the NSTX device
journal, March 2000


Status and verification of edge plasma turbulence code BOUT
journal, June 2009


Resistive X-point modes in tokamak boundary plasmas
journal, June 2000

  • Myra, J. R.; D’Ippolito, D. A.; Xu, X. Q.
  • Physics of Plasmas, Vol. 7, Issue 6
  • DOI: 10.1063/1.874125

Drift-ordered fluid equations for field-aligned modes in low-β collisional plasma with equilibrium pressure pedestals
journal, December 2003

  • Simakov, Andrei N.; Catto, Peter J.
  • Physics of Plasmas, Vol. 10, Issue 12
  • DOI: 10.1063/1.1623492

Parallel velocity shear instabilities in an inhomogeneous plasma with a sheared magnetic field
journal, January 1973


Suppression of turbulence and transport by sheared flow
journal, January 2000


Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma
journal, January 1982


Kelvin–Helmholtz instabilities in tokamak edge plasmas
journal, October 1999

  • Garbet, X.; Fenzi, C.; Capes, H.
  • Physics of Plasmas, Vol. 6, Issue 10
  • DOI: 10.1063/1.873659

Velocity Shear and Low-Frequency Plasma Instabilities
journal, January 1971


Physics of zonal flows
journal, May 2006

  • Itoh, K.; Itoh, S. -I.; Diamond, P. H.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2178779

Convective transport by intermittent blob-filaments: Comparison of theory and experiment
journal, June 2011

  • D’Ippolito, D. A.; Myra, J. R.; Zweben, S. J.
  • Physics of Plasmas, Vol. 18, Issue 6
  • DOI: 10.1063/1.3594609

Resistive fluid turbulence and energy confinement
journal, January 1984

  • Connor, J. W.; Taylor, J. B.
  • Physics of Fluids, Vol. 27, Issue 11
  • DOI: 10.1063/1.864570

Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code
journal, September 2011


Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device
journal, October 2010

  • Popovich, P.; Umansky, M. V.; Carter, T. A.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3500283

Turbulent transport regimes and the scrape-off layer heat flux width
journal, April 2015

  • Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.
  • Physics of Plasmas, Vol. 22, Issue 4
  • DOI: 10.1063/1.4919255

Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width
journal, September 2015

  • Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.
  • Physics of Plasmas, Vol. 22, Issue 9
  • DOI: 10.1063/1.4930285

Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime
journal, October 2015

  • Wang, W. X.; Ethier, S.; Ren, Y.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4933216

Destabilizing effect of density gradient on the Kelvin–Helmholtz instability
journal, November 2009

  • Wang, L. F.; Xue, C.; Ye, W. H.
  • Physics of Plasmas, Vol. 16, Issue 11
  • DOI: 10.1063/1.3255622

Magnetic X-points, edge localized modes, and stochasticity
journal, June 2010

  • Sugiyama, L. E.; Strauss, H. R.
  • Physics of Plasmas, Vol. 17, Issue 6
  • DOI: 10.1063/1.3449301

    Works referencing / citing this record:

    Theory based scaling of edge turbulence and implications for the scrape-off layer width
    journal, November 2016

    • Myra, J. R.; Russell, D. A.; Zweben, S. J.
    • Physics of Plasmas, Vol. 23, Issue 11
    • DOI: 10.1063/1.4966564

    Theory based scaling of edge turbulence and implications for the scrape-off layer width
    journal, November 2016

    • Myra, J. R.; Russell, D. A.; Zweben, S. J.
    • Physics of Plasmas, Vol. 23, Issue 11
    • DOI: 10.1063/1.4966564