DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal-Organic Frameworks

Abstract

Abstract Tetrathiafulvalene tetrabenzoate (TTFTB) and several lanthanide ions self‐assemble into metal‐organic frameworks (MOFs) that exhibit a novel topology, a (3,3,3,6,6)‐coordinated net, which features an unusual ligand coordination mode and stacking motif. The Yb and Lu MOFs are electrically conductive, with pellet conductivity values of 9(7) × 10 −7 and 3(2) × 10 −7 S/cm, respectively. The crystallographically‐determined bond lengths indicate partial oxidation of the ligand, with close S ⋅ ⋅ ⋅ S contacts between ligands providing likely charge transport pathways in the material. Magnetometry reveals temperature‐independent paramagnetism, consistent with the presence of ligand‐based radicals, as well as weak antiferromagnetic coupling between Yb 3+ centers. These results illustrate the diversity of MOF structures and properties that are accessible with the TTFTB ligand owing to its electroactive nature, propensity for intermolecular interactions, and conformational flexibility.

Authors:
 [1]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1612890
Alternate Identifier(s):
OSTI ID: 1463752
Grant/Contract Number:  
SC0018235; 1122374
Resource Type:
Accepted Manuscript
Journal Name:
Israel Journal of Chemistry
Additional Journal Information:
Journal Volume: 58; Journal Issue: 9-10; Journal ID: ISSN 0021-2148
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; metal-organic frameworks; lanthanides; structure elucidation; π interactions; tetrathiafulvalene

Citation Formats

Xie, Lilia S., and Dincă, Mircea. Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal-Organic Frameworks. United States: N. p., 2018. Web. doi:10.1002/ijch.201800068.
Xie, Lilia S., & Dincă, Mircea. Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal-Organic Frameworks. United States. https://doi.org/10.1002/ijch.201800068
Xie, Lilia S., and Dincă, Mircea. Thu . "Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal-Organic Frameworks". United States. https://doi.org/10.1002/ijch.201800068. https://www.osti.gov/servlets/purl/1612890.
@article{osti_1612890,
title = {Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal-Organic Frameworks},
author = {Xie, Lilia S. and Dincă, Mircea},
abstractNote = {Abstract Tetrathiafulvalene tetrabenzoate (TTFTB) and several lanthanide ions self‐assemble into metal‐organic frameworks (MOFs) that exhibit a novel topology, a (3,3,3,6,6)‐coordinated net, which features an unusual ligand coordination mode and stacking motif. The Yb and Lu MOFs are electrically conductive, with pellet conductivity values of 9(7) × 10 −7 and 3(2) × 10 −7 S/cm, respectively. The crystallographically‐determined bond lengths indicate partial oxidation of the ligand, with close S ⋅ ⋅ ⋅ S contacts between ligands providing likely charge transport pathways in the material. Magnetometry reveals temperature‐independent paramagnetism, consistent with the presence of ligand‐based radicals, as well as weak antiferromagnetic coupling between Yb 3+ centers. These results illustrate the diversity of MOF structures and properties that are accessible with the TTFTB ligand owing to its electroactive nature, propensity for intermolecular interactions, and conformational flexibility.},
doi = {10.1002/ijch.201800068},
journal = {Israel Journal of Chemistry},
number = 9-10,
volume = 58,
place = {United States},
year = {Thu Aug 09 00:00:00 EDT 2018},
month = {Thu Aug 09 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High Charge Mobility in a Tetrathiafulvalene-Based Microporous Metal–Organic Framework
journal, July 2012

  • Narayan, Tarun C.; Miyakai, Tomoyo; Seki, Shu
  • Journal of the American Chemical Society, Vol. 134, Issue 31
  • DOI: 10.1021/ja3059827

Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks
journal, January 2015

  • Park, Sarah S.; Hontz, Eric R.; Sun, Lei
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja512437u

Secondary building units, nets and bonding in the chemistry of metal–organic frameworks
journal, January 2009

  • Tranchemontagne, David J.; Mendoza-Cortés, José L.; O’Keeffe, Michael
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1257-1283
  • DOI: 10.1039/b817735j

Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks
journal, February 2008

  • Nouar, Farid; Eubank, Jarrod F.; Bousquet, Till
  • Journal of the American Chemical Society, Vol. 130, Issue 6
  • DOI: 10.1021/ja710123s

The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets
journal, December 2008

  • O’Keeffe, Michael; Peskov, Maxim A.; Ramsden, Stuart J.
  • Accounts of Chemical Research, Vol. 41, Issue 12, p. 1782-1789
  • DOI: 10.1021/ar800124u

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage
journal, January 2002

  • Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel
  • Science, Vol. 295, Issue 5554, p. 469-472
  • DOI: 10.1126/science.1067208

Selective Vapor Pressure Dependent Proton Transport in a Metal–Organic Framework with Two Distinct Hydrophilic Pores
journal, February 2018

  • Park, Sarah S.; Rieth, Adam J.; Hendon, Christopher H.
  • Journal of the American Chemical Society, Vol. 140, Issue 6
  • DOI: 10.1021/jacs.7b12784

Topological Analysis of Metal–Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle
journal, November 2013

  • Li, Mian; Li, Dan; O’Keeffe, Michael
  • Chemical Reviews, Vol. 114, Issue 2
  • DOI: 10.1021/cr400392k

From semiconductor-semiconductor transition (42 K) to the highest-Tc organic superconductor, .kappa.-(ET)2Cu[N(CN)2]Cl (Tc = 12.5 K)
journal, September 1990

  • Williams, Jack M.; Kini, Aravinda M.; Wang, Hau H.
  • Inorganic Chemistry, Vol. 29, Issue 18
  • DOI: 10.1021/ic00343a003

Applied Topological Analysis of Crystal Structures with the Program Package ToposPro
journal, May 2014

  • Blatov, Vladislav A.; Shevchenko, Alexander P.; Proserpio, Davide M.
  • Crystal Growth & Design, Vol. 14, Issue 7
  • DOI: 10.1021/cg500498k

Recent progress on conducting organic charge-transfer salts
journal, January 1991


Reticular synthesis and the design of new materials
journal, June 2003

  • Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.
  • Nature, Vol. 423, Issue 6941, p. 705-714
  • DOI: 10.1038/nature01650

Hydrogen storage in metal–organic frameworks
journal, January 2009

  • Murray, Leslie J.; Dincă, Mircea; Long, Jeffrey R.
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1294-1314
  • DOI: 10.1039/b802256a

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Redox-switchable breathing behavior in tetrathiafulvalene-based metal–organic frameworks
journal, December 2017


Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Tuning the structure and function of metal–organic frameworks via linker design
journal, January 2014

  • Lu, Weigang; Wei, Zhangwen; Gu, Zhi-Yuan
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00003J

A New Ambient Pressure Organic Superconductor Based on BEDT-TTF with T C Higher than 10 K (T C =10.4 K)
journal, January 1988

  • Urayama, Hatsumi; Yamochi, Hideki; Saito, Gunzi
  • Chemistry Letters, Vol. 17, Issue 1
  • DOI: 10.1246/cl.1988.55

The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels
journal, March 2017

  • Park, Sarah S.; Hendon, Christopher H.; Fielding, Alistair J.
  • Journal of the American Chemical Society, Vol. 139, Issue 10
  • DOI: 10.1021/jacs.6b13176

Magnetic Properties of a New Class of Highly Conductive Organic Solids
journal, December 1963

  • Kepler, R. G.
  • The Journal of Chemical Physics, Vol. 39, Issue 12
  • DOI: 10.1063/1.1734225

The electronic, optical and magnetic consequences of delocalization in multifunctional donor–acceptor organic polymers
journal, January 2015

  • Rizzuto, Felix J.; Hua, Carol; Chan, Bun
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 17
  • DOI: 10.1039/C5CP00081E

Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays
journal, July 2004

  • Ruben, Mario; Rojo, Javier; Romero-Salguero, Francisco J.
  • Angewandte Chemie International Edition, Vol. 43, Issue 28
  • DOI: 10.1002/anie.200300636

Measuring and Reporting Electrical Conductivity in Metal–Organic Frameworks: Cd 2 (TTFTB) as a Case Study
journal, October 2016

  • Sun, Lei; Park, Sarah S.; Sheberla, Dennis
  • Journal of the American Chemical Society, Vol. 138, Issue 44
  • DOI: 10.1021/jacs.6b09345

Deconstructing the Crystal Structures of Metal–Organic Frameworks and Related Materials into Their Underlying Nets
journal, September 2011

  • O’Keeffe, Michael; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 675-702
  • DOI: 10.1021/cr200205j

Works referencing / citing this record:

Electronic, Structural and Functional Versatility in Tetrathiafulvalene‐Lanthanide Metal–Organic Frameworks
journal, August 2019

  • Castells‐Gil, Javier; Mañas‐Valero, Samuel; Vitórica‐Yrezábal, Iñigo J.
  • Chemistry – A European Journal, Vol. 25, Issue 54
  • DOI: 10.1002/chem.201902855

Interdigitated conducting tetrathiafulvalene-based coordination networks
journal, January 2020

  • Bechu, Damien; Xie, Lilia S.; Le Breton, Nolwenn
  • Chemical Communications, Vol. 56, Issue 16
  • DOI: 10.1039/c9cc09960c

Tetrathiopyridyl-tetrathiafulvalene-based Cd( ii ) coordination polymers: one ligand, one metal cation, many possibilities
journal, January 2019

  • Bechu, Damien; Rogez, Guillaume; Hosseini, Mir Wais
  • New Journal of Chemistry, Vol. 43, Issue 36
  • DOI: 10.1039/c9nj03572a

Redox, transmetalation, and stacking properties of tetrathiafulvalene-2,3,6,7-tetrathiolate bridged tin, nickel, and palladium compounds
journal, January 2020

  • Xie, Jiaze; Boyn, Jan-Niklas; Filatov, Alexander S.
  • Chemical Science, Vol. 11, Issue 4
  • DOI: 10.1039/c9sc04381k