skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum limit transport and destruction of the Weyl nodes in TaAs

Abstract

Weyl fermions are a recently discovered ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. Here we use magnetic fields up to 95 T to drive the Weyl semimetal TaAs far into its quantum limit, where only the purely chiral 0th Landau levels of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 T: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 T we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral Landau levels. Above 80 T we observe strong ultrasonic attenuation below 2 K, suggesting a mesoscopically textured state of matter. Furthermore, these results point the way to inducing new correlated states of matter in the quantum limit of Weyl semimetals.

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [4]; ORCiD logo [2];  [2];  [5];  [5];  [5];  [5];  [6]; ORCiD logo [5];  [5]; ORCiD logo [5]
  1. Cornell Univ., Ithaca, NY (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany)
  3. National High Magnetic Field Lab., Tallahassee, FL (United States)
  4. Cornell Univ., Ithaca, NY (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
European Research Council (ERC); National Science Foundation (NSF); Fritz Haber Institute of the Max Planck Society (Fritz-Haber-Institut der Max-Planck-Gesellschaft); Engineering and Physical Sciences Research Council (EPSRC); Los Alamos National Laboratory (LANL), Laboratory Directed Research and Development (LDRL); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1463697
Alternate Identifier(s):
OSTI ID: 1467205
Report Number(s):
LA-UR-17-23674
Journal ID: ISSN 2041-1723; 145520
Grant/Contract Number:  
AC02-06CH11357; AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; High Magnetic Field Science; Weyl semimetal Quantum limit magnetotransport ultrasound

Citation Formats

Ramshaw, B. J., Modic, K. A., Shekhter, Arkady, Zhang, Yi, Kim, Eun -Ah, Moll, Philip J. W., Bachmann, Maja D., Chan, M. K., Betts, J. B., Balakirev, F., Migliori, A., Ghimire, N. J., Bauer, E. D., Ronning, F., and McDonald, R. D. Quantum limit transport and destruction of the Weyl nodes in TaAs. United States: N. p., 2018. Web. doi:10.1038/s41467-018-04542-9.
Ramshaw, B. J., Modic, K. A., Shekhter, Arkady, Zhang, Yi, Kim, Eun -Ah, Moll, Philip J. W., Bachmann, Maja D., Chan, M. K., Betts, J. B., Balakirev, F., Migliori, A., Ghimire, N. J., Bauer, E. D., Ronning, F., & McDonald, R. D. Quantum limit transport and destruction of the Weyl nodes in TaAs. United States. doi:10.1038/s41467-018-04542-9.
Ramshaw, B. J., Modic, K. A., Shekhter, Arkady, Zhang, Yi, Kim, Eun -Ah, Moll, Philip J. W., Bachmann, Maja D., Chan, M. K., Betts, J. B., Balakirev, F., Migliori, A., Ghimire, N. J., Bauer, E. D., Ronning, F., and McDonald, R. D. Thu . "Quantum limit transport and destruction of the Weyl nodes in TaAs". United States. doi:10.1038/s41467-018-04542-9. https://www.osti.gov/servlets/purl/1463697.
@article{osti_1463697,
title = {Quantum limit transport and destruction of the Weyl nodes in TaAs},
author = {Ramshaw, B. J. and Modic, K. A. and Shekhter, Arkady and Zhang, Yi and Kim, Eun -Ah and Moll, Philip J. W. and Bachmann, Maja D. and Chan, M. K. and Betts, J. B. and Balakirev, F. and Migliori, A. and Ghimire, N. J. and Bauer, E. D. and Ronning, F. and McDonald, R. D.},
abstractNote = {Weyl fermions are a recently discovered ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. Here we use magnetic fields up to 95 T to drive the Weyl semimetal TaAs far into its quantum limit, where only the purely chiral 0th Landau levels of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 T: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 T we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral Landau levels. Above 80 T we observe strong ultrasonic attenuation below 2 K, suggesting a mesoscopically textured state of matter. Furthermore, these results point the way to inducing new correlated states of matter in the quantum limit of Weyl semimetals.},
doi = {10.1038/s41467-018-04542-9},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share: