skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 23, 2019

Title: On the structure of the drifton phase space and its relation to the Rayleigh–Kuo criterion of the zonal-flow stability

The phase space of driftons (drift-wave quanta) is studied within the generalized Hasegawa–Mima collisionless-plasma model in the presence of zonal flows. This phase space is made intricate by the corrections to the drifton ray equations that were recently proposed by Parker [J. Plasma Phys. 82, 595820602 (2016)] and Ruiz et al. [Phys. Plasmas 23, 122304 (2016)]. Contrary to the traditional geometrical-optics (GO) model of the drifton dynamics, it is found that driftons can not only be trapped or passing but also accumulate spatially while experiencing indefinite growth of their momenta. In particular, it is found that the Rayleigh–Kuo threshold known from geophysics corresponds to the regime when such “runaway” trajectories are the only ones possible. On one hand, this analysis helps to visualize the development of the zonostrophic instability, particularly its nonlinear stage, which is studied here both analytically and through wave-kinetic simulations. On the other hand, the GO theory predicts that zonal flows above the Rayleigh–Kuo threshold can only grow; hence, the deterioration of intense zonal flows cannot be captured within a GO model. In particular, this means that the so-called tertiary instability of intense zonal flows cannot be adequately described within the quasilinear wave kinetic equation, contrary tomore » some previous studies.« less
Authors:
ORCiD logo [1] ; ORCiD logo [2] ; ORCiD logo [1]
  1. Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Grant/Contract Number:
AC02-09CH11466
Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 7; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Research Org:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
OSTI Identifier:
1463315
Alternate Identifier(s):
OSTI ID: 1461241