skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy

Abstract

Whereas standard transmission electron microscopy studies are unable to preserve the native state of chemically reactive and beam-sensitive battery materials after operation, such materials remain pristine at cryogenic conditions. It is then possible to atomically resolve individual lithium metal atoms and their interface with the solid electrolyte interphase (SEI). We observe that dendrites in carbonate-based electrolytes grow along the < 111 > (preferred), < 110 >, or < 211 > directions as faceted, single-crystalline nanowires. These growth directions can change at kinks with no observable crystallographic defect. As a result, we reveal distinct SEI nanostructures formed in different electrolytes.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1];  [3]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ. School of Medicine, Stanford, CA (United States)
  3. ShanghaiTech Univ., Shanghai (China)
  4. Stanford Univ., Stanford, CA (United States); Univ. Siegen, Siegen (Germany)
  5. Stanford Univ., Stanford, CA (United States); Stanford Univ. School of Medicine, Stanford, CA (United States)
  6. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1463306
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 358; Journal Issue: 6362; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Li, Yuzhang, Li, Yanbin, Pei, Allen, Yan, Kai, Sun, Yongming, Wu, Chun -Lan, Joubert, Lydia -Marie, Chin, Richard, Koh, Ai Leen, Yu, Yi, Perrino, John, Butz, Benjamin, Chu, Steven, and Cui, Yi. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. United States: N. p., 2017. Web. doi:10.1126/science.aam6014.
Li, Yuzhang, Li, Yanbin, Pei, Allen, Yan, Kai, Sun, Yongming, Wu, Chun -Lan, Joubert, Lydia -Marie, Chin, Richard, Koh, Ai Leen, Yu, Yi, Perrino, John, Butz, Benjamin, Chu, Steven, & Cui, Yi. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. United States. doi:10.1126/science.aam6014.
Li, Yuzhang, Li, Yanbin, Pei, Allen, Yan, Kai, Sun, Yongming, Wu, Chun -Lan, Joubert, Lydia -Marie, Chin, Richard, Koh, Ai Leen, Yu, Yi, Perrino, John, Butz, Benjamin, Chu, Steven, and Cui, Yi. Fri . "Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy". United States. doi:10.1126/science.aam6014. https://www.osti.gov/servlets/purl/1463306.
@article{osti_1463306,
title = {Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy},
author = {Li, Yuzhang and Li, Yanbin and Pei, Allen and Yan, Kai and Sun, Yongming and Wu, Chun -Lan and Joubert, Lydia -Marie and Chin, Richard and Koh, Ai Leen and Yu, Yi and Perrino, John and Butz, Benjamin and Chu, Steven and Cui, Yi},
abstractNote = {Whereas standard transmission electron microscopy studies are unable to preserve the native state of chemically reactive and beam-sensitive battery materials after operation, such materials remain pristine at cryogenic conditions. It is then possible to atomically resolve individual lithium metal atoms and their interface with the solid electrolyte interphase (SEI). We observe that dendrites in carbonate-based electrolytes grow along the < 111 > (preferred), < 110 >, or < 211 > directions as faceted, single-crystalline nanowires. These growth directions can change at kinks with no observable crystallographic defect. As a result, we reveal distinct SEI nanostructures formed in different electrolytes.},
doi = {10.1126/science.aam6014},
journal = {Science},
number = 6362,
volume = 358,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 202 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries
journal, May 2010

  • Bhattacharyya, Rangeet; Key, Baris; Chen, Hailong
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2764

High-Resolution Transmission Electron Microscopy Using Negative Spherical Aberration
journal, March 2004

  • Jia, Chun-Lin; Lentzen,, Markus; Urban, Knut
  • Microscopy and Microanalysis, Vol. 10, Issue 02
  • DOI: 10.1017/S1431927604040425

Structural properties of 〈111〉B -oriented III–V nanowires
journal, June 2006

  • Johansson, Jonas; Karlsson, Lisa S.; Patrik T. Svensson, C.
  • Nature Materials, Vol. 5, Issue 7
  • DOI: 10.1038/nmat1677

Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
journal, November 2013

  • Harry, Katherine J.; Hallinan, Daniel T.; Parkinson, Dilworth Y.
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/NMAT3793

STEM_CELL: A software tool for electron microscopy: Part I—simulations
journal, February 2013


Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy
journal, September 2009

  • Urban, Knut W.; Jia, Chun-Lin; Houben, Lothar
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, Issue 1903
  • DOI: 10.1098/rsta.2009.0134

Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode
journal, January 2013

  • Ding, Fei; Xu, Wu; Chen, Xilin
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.100310jes

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Twinning superlattices in indium phosphide nanowires
journal, November 2008

  • Algra, Rienk E.; Verheijen, Marcel A.; Borgström, Magnus T.
  • Nature, Vol. 456, Issue 7220
  • DOI: 10.1038/nature07570

A spherical-aberration-corrected 200kV transmission electron microscope
journal, October 1998


Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices
journal, September 2005


Single-crystalline kinked semiconductor nanowire superstructures
journal, October 2009

  • Tian, Bozhi; Xie, Ping; Kempa, Thomas J.
  • Nature Nanotechnology, Vol. 4, Issue 12
  • DOI: 10.1038/nnano.2009.304

Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries
journal, August 2015


Radiation damage in the TEM and SEM
journal, August 2004


In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters
journal, February 2015

  • Sacci, Robert L.; Black, Jennifer M.; Balke, Nina
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl5048626

Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics
journal, February 2003


Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy
journal, February 2015

  • Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.
  • ACS Nano, Vol. 9, Issue 4
  • DOI: 10.1021/acsnano.5b00876

Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
journal, January 2011

  • Wang, Feng; Graetz, Jason; Moreno, M. Sergio
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn1028168

Lithium Metal-Gas Reactions.
journal, October 1962

  • Markowitz, M. M.; Boryta, D. A.
  • Journal of Chemical & Engineering Data, Vol. 7, Issue 4
  • DOI: 10.1021/je60015a047

The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions
journal, January 1994

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054718

Controlled polytypic and twin-plane superlattices in iii–v nanowires
journal, November 2008


The surface energy of metals
journal, August 1998


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Studying Atomic Structures by Aberration-Corrected Transmission Electron Microscopy
journal, July 2008


Dendritic growth mechanisms in lithium/polymer cells
journal, September 1999


Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM
journal, February 2015


Crystallographic Data 186. Lithium
journal, December 1959

  • Nadler, M. R/.; Kempier, C. P.
  • Analytical Chemistry, Vol. 31, Issue 12
  • DOI: 10.1021/ac60156a007

Visualization of Electrode–Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM
journal, March 2014

  • Zeng, Zhiyuan; Liang, Wen-I; Liao, Hong-Gang
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl403922u

Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions
journal, January 1987

  • Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 134, Issue 7
  • DOI: 10.1149/1.2100722

    Works referencing / citing this record:

    Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy
    journal, July 2019


    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j

    In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
    journal, January 2019

    • Zhou, Hongyao; Liu, Haodong; Li, Yejing
    • Journal of Materials Chemistry A, Vol. 7, Issue 28
    • DOI: 10.1039/c9ta02341k

    Revealing Operando Transformation Dynamics in Individual Li-ion Electrode Crystallites Using X-Ray Microbeam Diffraction
    journal, July 2018

    • van Hulzen, Martijn; Ooms, Frans G. B.; Wright, Jonathan P.
    • Frontiers in Energy Research, Vol. 6
    • DOI: 10.3389/fenrg.2018.00059

    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697

    New Insights into Nail Penetration of Li‐Ion Batteries: Effects of Heterogeneous Contact Resistance
    journal, July 2019


    In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries
    journal, June 2019


    A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte
    journal, July 2019


    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697

    New Insights into Nail Penetration of Li‐Ion Batteries: Effects of Heterogeneous Contact Resistance
    journal, July 2019


    In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries
    journal, June 2019


    A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte
    journal, July 2019


    Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy
    journal, July 2019


    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j

    In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
    journal, January 2019

    • Zhou, Hongyao; Liu, Haodong; Li, Yejing
    • Journal of Materials Chemistry A, Vol. 7, Issue 28
    • DOI: 10.1039/c9ta02341k

    Atomic electron tomography in three and four dimensions
    journal, April 2020

    • Zhou, Jihan; Yang, Yongsoo; Ercius, Peter
    • MRS Bulletin, Vol. 45, Issue 4
    • DOI: 10.1557/mrs.2020.88

    Revealing Operando Transformation Dynamics in Individual Li-ion Electrode Crystallites Using X-Ray Microbeam Diffraction
    journal, July 2018

    • van Hulzen, Martijn; Ooms, Frans G. B.; Wright, Jonathan P.
    • Frontiers in Energy Research, Vol. 6
    • DOI: 10.3389/fenrg.2018.00059