skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Integrated modeling of cryogenic layered highfoot experiments at the NIF

Abstract

Integrated radiation hydrodynamic modeling in two dimensions, including the hohlraum and capsule, of layered cryogenic HighFoot Deuterium-Tritium (DT) implosions on the NIF successfully predicts important data trends. The model consists of a semi-empirical fit to low mode asymmetries and radiation drive multipliers to match shock trajectories, one dimensional inflight radiography, and time of peak neutron production. Application of the model across the HighFoot shot series, over a range of powers, laser energies, laser wavelengths, and target thicknesses predicts the neutron yield to within a factor of two for most shots. The Deuterium-Deuterium ion temperatures and the DT down scattered ratios, ratio of (10–12)/(13–15) MeV neutrons, roughly agree with data at peak fuel velocities <340 km/s and deviate at higher peak velocities, potentially due to flows and neutron scattering differences stemming from 3D or capsule support tent effects. These calculations show a significant amount alpha heating, 1–2.5× for shots where the experimental yield is within a factor of two, which has been achieved by increasing the fuel kinetic energy. This level of alpha heating is consistent with a dynamic hot spot model that is matched to experimental data and as determined from scaling of the yield with peak fuel velocity. Lastly,more » these calculations also show that low mode asymmetries become more important as the fuel velocity is increased, and that improving these low mode asymmetries can result in an increase in the yield by a factor of several.« less

Authors:
 [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1463014
Alternate Identifier(s):
OSTI ID: 1253394
Report Number(s):
LLNL-JRNL-679660
Journal ID: ISSN 1070-664X; PHPAEN; 802733; TRN: US1902249
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Kritcher, A. L., Hinkel, D. E., Callahan, D. A., Hurricane, O. A., Clark, D., Casey, D. T., Dewald, E. L., Dittrich, T. R., Doppner, T., Barrios Garcia, M. A., Haan, S., Berzak Hopkins, L. F., Jones, O., Landen, O., Ma, T., Meezan, N., Milovich, J. L., Pak, A. E., Park, H. -S., Patel, P. K., Ralph, J., Robey, H. F., Salmonson, J. D., Sepke, S., Spears, B., Springer, P. T., Thomas, C. A., Town, R., Celliers, P. M., and Edwards, M. J. Integrated modeling of cryogenic layered highfoot experiments at the NIF. United States: N. p., 2016. Web. doi:10.1063/1.4949351.
Kritcher, A. L., Hinkel, D. E., Callahan, D. A., Hurricane, O. A., Clark, D., Casey, D. T., Dewald, E. L., Dittrich, T. R., Doppner, T., Barrios Garcia, M. A., Haan, S., Berzak Hopkins, L. F., Jones, O., Landen, O., Ma, T., Meezan, N., Milovich, J. L., Pak, A. E., Park, H. -S., Patel, P. K., Ralph, J., Robey, H. F., Salmonson, J. D., Sepke, S., Spears, B., Springer, P. T., Thomas, C. A., Town, R., Celliers, P. M., & Edwards, M. J. Integrated modeling of cryogenic layered highfoot experiments at the NIF. United States. doi:10.1063/1.4949351.
Kritcher, A. L., Hinkel, D. E., Callahan, D. A., Hurricane, O. A., Clark, D., Casey, D. T., Dewald, E. L., Dittrich, T. R., Doppner, T., Barrios Garcia, M. A., Haan, S., Berzak Hopkins, L. F., Jones, O., Landen, O., Ma, T., Meezan, N., Milovich, J. L., Pak, A. E., Park, H. -S., Patel, P. K., Ralph, J., Robey, H. F., Salmonson, J. D., Sepke, S., Spears, B., Springer, P. T., Thomas, C. A., Town, R., Celliers, P. M., and Edwards, M. J. Tue . "Integrated modeling of cryogenic layered highfoot experiments at the NIF". United States. doi:10.1063/1.4949351. https://www.osti.gov/servlets/purl/1463014.
@article{osti_1463014,
title = {Integrated modeling of cryogenic layered highfoot experiments at the NIF},
author = {Kritcher, A. L. and Hinkel, D. E. and Callahan, D. A. and Hurricane, O. A. and Clark, D. and Casey, D. T. and Dewald, E. L. and Dittrich, T. R. and Doppner, T. and Barrios Garcia, M. A. and Haan, S. and Berzak Hopkins, L. F. and Jones, O. and Landen, O. and Ma, T. and Meezan, N. and Milovich, J. L. and Pak, A. E. and Park, H. -S. and Patel, P. K. and Ralph, J. and Robey, H. F. and Salmonson, J. D. and Sepke, S. and Spears, B. and Springer, P. T. and Thomas, C. A. and Town, R. and Celliers, P. M. and Edwards, M. J.},
abstractNote = {Integrated radiation hydrodynamic modeling in two dimensions, including the hohlraum and capsule, of layered cryogenic HighFoot Deuterium-Tritium (DT) implosions on the NIF successfully predicts important data trends. The model consists of a semi-empirical fit to low mode asymmetries and radiation drive multipliers to match shock trajectories, one dimensional inflight radiography, and time of peak neutron production. Application of the model across the HighFoot shot series, over a range of powers, laser energies, laser wavelengths, and target thicknesses predicts the neutron yield to within a factor of two for most shots. The Deuterium-Deuterium ion temperatures and the DT down scattered ratios, ratio of (10–12)/(13–15) MeV neutrons, roughly agree with data at peak fuel velocities <340 km/s and deviate at higher peak velocities, potentially due to flows and neutron scattering differences stemming from 3D or capsule support tent effects. These calculations show a significant amount alpha heating, 1–2.5× for shots where the experimental yield is within a factor of two, which has been achieved by increasing the fuel kinetic energy. This level of alpha heating is consistent with a dynamic hot spot model that is matched to experimental data and as determined from scaling of the yield with peak fuel velocity. Lastly, these calculations also show that low mode asymmetries become more important as the fuel velocity is increased, and that improving these low mode asymmetries can result in an increase in the yield by a factor of several.},
doi = {10.1063/1.4949351},
journal = {Physics of Plasmas},
number = 5,
volume = 23,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

NIF-scale re-emission sphere measurements of early-time Tr=100eV hohlraum symmetry (invited)
journal, October 2008

  • Dewald, E. L.; Thomas, C.; Milovich, J.
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.2970041

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Neutron spectrometry—An essential tool for diagnosing implosions at the National Ignition Facility (invited)
journal, October 2012

  • Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4728095

Ignition condition and gain prediction for perturbed inertial confinement fusion targets
journal, November 2001

  • Kishony, Roy; Shvarts, Dov
  • Physics of Plasmas, Vol. 8, Issue 11
  • DOI: 10.1063/1.1412009

The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Design and construction of a Gamma reaction history diagnostic for the National Ignition Facility
journal, August 2010


Diagnosing inertial confinement fusion gamma ray physics (invited)
journal, October 2010

  • Herrmann, H. W.; Hoffman, N.; Wilson, D. C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3495770

Integrated diagnostic analysis of inertial confinement fusion capsule performance
journal, May 2013

  • Cerjan, Charles; Springer, Paul T.; Sepke, Scott M.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802196

Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility
journal, May 2010

  • Michel, P.; Glenzer, S. H.; Divol, L.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3325733

X-ray driven implosions at ignition relevant velocities on the National Ignition Facility
journal, May 2013

  • Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803915

Reduced instability growth with high-adiabat high-foot implosions at the National Ignition Facility
journal, July 2014


Higher velocity, high-foot implosions on the National Ignition Facility lasera)
journal, May 2015

  • Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921144

Effect of the mounting membrane on shape in inertial confinement fusion implosions
journal, February 2015

  • Nagel, S. R.; Haan, S. W.; Rygg, J. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907179

The production spectrum in fusion plasmas
journal, February 2011


Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra
journal, July 2014


Gated x-ray detector for the National Ignition Facility
journal, October 2006

  • Oertel, John A.; Aragonez, Robert; Archuleta, Tom
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2227439

Updated Opal Opacities
journal, June 1996

  • Iglesias, Carlos A.; Rogers, Forrest J.
  • The Astrophysical Journal, Vol. 464
  • DOI: 10.1086/177381

Species separation and modification of neutron diagnostics in inertial-confinement fusion
journal, September 2014


Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF
journal, February 2014

  • Robey, H. F.; Celliers, P. M.; Moody, J. D.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4863975

The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Spears, Brian K.; Edwards, M. J.; Hatchett, S.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4870390

Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion
journal, March 2015

  • Weber, C. R.; Clark, D. S.; Cook, A. W.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4914157

Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions
journal, January 2015


Implosion dynamics measurements at the National Ignition Facility
journal, December 2012

  • Hicks, D. G.; Meezan, N. B.; Dewald, E. L.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4769268

The National Ignition Facility neutron time-of-flight system and its initial performance (invited)
journal, October 2010

  • Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3492351

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas
journal, July 2013


Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility
journal, May 2014

  • Town, R. P. J.; Bradley, D. K.; Kritcher, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876609

Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation
journal, April 2012

  • Robey, H. F.; Boehly, T. R.; Celliers, P. M.
  • Physics of Plasmas, Vol. 19, Issue 4
  • DOI: 10.1063/1.3694122

Stochastic Ion Heating from Many Overlapping Laser Beams in Fusion Plasmas
journal, November 2012


Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign
journal, February 2015

  • Clark, D. S.; Marinak, M. M.; Weber, C. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4906897

Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion
journal, May 1998

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872802

Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, April 2015


Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)
journal, November 2014

  • Hohenberger, M.; Albert, F.; Palmer, N. E.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4890537

Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions
journal, September 2015


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Novel Characterization of Capsule X-Ray Drive at the National Ignition Facility
journal, March 2014


    Works referencing / citing this record: