skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface

Abstract

Here, we have developed a proof of concept electrode design to covalently graft poly(methyl methacrylate) brushes directly to silicon thin film electrodes via surface-initiated atom transfer radical polymerization. This polymer layer acts as a stable artificial solid electrolyte interface that enables surface passivation despite large volume changes during cycling. Thin polymer layers (75 nm) improve average first cycle coulombic efficiency from 62.4% in bare silicon electrodes to 76.3%. Average first cycle reversible capacity was improved from 3157 to 3935 mAh g -1, and average irreversible capacity was reduced from 2011 to 1020 mAh g -1. Electrochemical impedance spectroscopy performed on silicon electrodes showed that resistance from solid electrolyte interface formation increased from 79 to 1508 Ω in untreated silicon thin films over 26 cycles, while resistance growth was lower – from 98 to 498 Ω – in silicon films functionalized with PMMA brushes. The lower increase suggests enhanced surface passivation and lower electrolyte degradation. This work provides a pathway to develop artificial solid electrolyte interfaces synthesized under controlled reaction conditions.

Authors:
 [1]; ORCiD logo [2];  [1]
  1. Univ. of Rochester, NY (United States). Dept. of Chemical Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1462871
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Shen, Brian H., Veith, Gabriel M., and Tenhaeff, Wyatt E. Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface. United States: N. p., 2018. Web. doi:10.1038/s41598-018-30000-z.
Shen, Brian H., Veith, Gabriel M., & Tenhaeff, Wyatt E. Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface. United States. doi:10.1038/s41598-018-30000-z.
Shen, Brian H., Veith, Gabriel M., and Tenhaeff, Wyatt E. Wed . "Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface". United States. doi:10.1038/s41598-018-30000-z. https://www.osti.gov/servlets/purl/1462871.
@article{osti_1462871,
title = {Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface},
author = {Shen, Brian H. and Veith, Gabriel M. and Tenhaeff, Wyatt E.},
abstractNote = {Here, we have developed a proof of concept electrode design to covalently graft poly(methyl methacrylate) brushes directly to silicon thin film electrodes via surface-initiated atom transfer radical polymerization. This polymer layer acts as a stable artificial solid electrolyte interface that enables surface passivation despite large volume changes during cycling. Thin polymer layers (75 nm) improve average first cycle coulombic efficiency from 62.4% in bare silicon electrodes to 76.3%. Average first cycle reversible capacity was improved from 3157 to 3935 mAh g-1, and average irreversible capacity was reduced from 2011 to 1020 mAh g-1. Electrochemical impedance spectroscopy performed on silicon electrodes showed that resistance from solid electrolyte interface formation increased from 79 to 1508 Ω in untreated silicon thin films over 26 cycles, while resistance growth was lower – from 98 to 498 Ω – in silicon films functionalized with PMMA brushes. The lower increase suggests enhanced surface passivation and lower electrolyte degradation. This work provides a pathway to develop artificial solid electrolyte interfaces synthesized under controlled reaction conditions.},
doi = {10.1038/s41598-018-30000-z},
journal = {Scientific Reports},
number = ,
volume = 8,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment
journal, January 2007

  • Tsao, C. W.; Hromada, L.; Liu, J.
  • Lab on a Chip, Vol. 7, Issue 4
  • DOI: 10.1039/b618901f

The Chemistry of Electrolyte Reduction on Silicon Electrodes Revealed by in Situ ATR-FTIR Spectroscopy
journal, June 2017

  • Shi, Feifei; Ross, Philip N.; Somorjai, Gabor A.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 27
  • DOI: 10.1021/acs.jpcc.7b04132

XPS and AFM surface studies of solvent-cast PS/PMMA blends
journal, February 2001


A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes
journal, February 2016


Lithium insertion into amorphous silicon thin-film electrodes
journal, February 2007


A review of the electrochemical performance of alloy anodes for lithium-ion batteries
journal, January 2011


AFM and XPS study of UV-irradiated poly(methyl methacrylate) films on glass and aluminum support
journal, April 2009


Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes
journal, January 2011

  • Li, Juchuan; Dozier, Alan K.; Li, Yunchao
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3574027

A review of polymer dissolution
journal, August 2003


Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation
journal, February 2012

  • Abel, Paul R.; Lin, Yong-Mao; Celio, Hugo
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn204896n

Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
journal, October 2013


Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives
journal, December 2017

  • Franco Gonzalez, Alba; Yang, Nai-Hsuan; Liu, Ru-Shi
  • The Journal of Physical Chemistry C, Vol. 121, Issue 50
  • DOI: 10.1021/acs.jpcc.7b07793

ARGET ATRP of methyl methacrylate in the presence of nitrogen-based ligands as reducing agents
journal, March 2009

  • Kwak, Yungwan; Matyjaszewski, Krzysztof
  • Polymer International, Vol. 58, Issue 3
  • DOI: 10.1002/pi.2530

Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries
journal, July 2009

  • Key, Baris; Bhattacharyya, Rangeet; Morcrette, Mathieu
  • Journal of the American Chemical Society, Vol. 131, Issue 26
  • DOI: 10.1021/ja8086278

Infrared Spectra of Poly(Methyl Methacrylate) Labeled with Oxygen-18
journal, November 1979


Silane-Derived SEI Stabilization on Thin-Film Electrodes of Nanocrystalline Si for Lithium Batteries
journal, January 2009

  • Song, Seung-Wan; Baek, Seung-Won
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 2
  • DOI: 10.1149/1.3028216

Experimental limitations in impedance spectroscopy: Part III. Effect of reference electrode geometry/position
journal, April 1997


Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
journal, April 2009


Analysis of Three-Electrode Setups for AC-Impedance Measurements on Lithium-Ion Cells by FEM simulations
journal, January 2011

  • Ender, Moses; Weber, André; Ellen, Ivers-Tiffée
  • Journal of The Electrochemical Society, Vol. 159, Issue 2
  • DOI: 10.1149/2.100202jes

Lithium intercalation into amorphous-silicon thin films: An electrochemical-impedance study
journal, July 2006

  • Kulova, T. L.; Pleskov, Yu. V.; Skundin, A. M.
  • Russian Journal of Electrochemistry, Vol. 42, Issue 7
  • DOI: 10.1134/S1023193506070032

Review on composite polymer electrolytes for lithium batteries
journal, July 2006


Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery
journal, April 2015


Novel conductive binder for high-performance silicon anodes in lithium ion batteries
journal, June 2017


On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries
journal, December 2007


Initiated CVD of Poly(methyl methacrylate) Thin Films
journal, October 2005


The Mechanism of SEI Formation on a Single Crystal Si(100) Electrode
journal, January 2015

  • Vogl, Ulrike S.; Lux, Simon F.; Crumlin, Ethan J.
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0391504jes

Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries
journal, August 2011


A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Mechanism of Interactions between CMC Binder and Si Single Crystal Facets
journal, August 2014

  • Vogl, U. S.; Das, P. K.; Weber, A. Z.
  • Langmuir, Vol. 30, Issue 34
  • DOI: 10.1021/la501791q

Molecular grafting on silicon anodes: artificial Solid-Electrolyte Interphase and surface stabilization
journal, May 2016


A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries
journal, April 2017


Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability
journal, January 2008

  • Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 5
  • DOI: 10.1149/1.2888173

Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers
journal, August 1992

  • Briggs, David.; Beamson, Graham.
  • Analytical Chemistry, Vol. 64, Issue 15
  • DOI: 10.1021/ac00039a018

ARGET ATRP of Methyl Acrylate with Inexpensive Ligands and ppm Concentrations of Catalyst
journal, February 2011

  • Kwak, Yungwan; Magenau, Andrew J. D.; Matyjaszewski, Krzysztof
  • Macromolecules, Vol. 44, Issue 4
  • DOI: 10.1021/ma102665c

Li-ion batteries: basics, progress, and challenges
journal, September 2015

  • Deng, Da
  • Energy Science & Engineering, Vol. 3, Issue 5
  • DOI: 10.1002/ese3.95

Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon–graphene hybrid anodes
journal, January 2016

  • Loveridge, Melanie J.; Lain, Michael J.; Huang, Qianye
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 44
  • DOI: 10.1039/C6CP06788C

Ionic conductivity and FT-IR studies on plasticized PVC/PMMA blend polymer electrolytes
journal, July 2000


Li + -Conductive Polymer-Embedded Nano-Si Particles as Anode Material for Advanced Li-ion Batteries
journal, February 2014

  • Chen, Yao; Zeng, Shi; Qian, Jianfeng
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 5
  • DOI: 10.1021/am4056672

Sputtered copper coating on silicon/graphite composite anode for lithium ion batteries
journal, June 2014


Artificial Solid Electrolyte Interphase To Address the Electrochemical Degradation of Silicon Electrodes
journal, June 2014

  • Li, Juchuan; Dudney, Nancy J.; Nanda, Jagjit
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 13
  • DOI: 10.1021/am5009419

Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films
journal, January 1980

  • Ho, C.
  • Journal of The Electrochemical Society, Vol. 127, Issue 2
  • DOI: 10.1149/1.2129668

Highly Reversible Lithium Storage in Nanostructured Silicon
journal, January 2003

  • Graetz, J.; Ahn, C. C.; Yazami, R.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 9
  • DOI: 10.1149/1.1596917

High-resolution monochromated XPS of poly(methyl methacrylate) thin films on a conducting substrate
journal, February 1991

  • Beamson, G.; Bunn, A.; Briggs, D.
  • Surface and Interface Analysis, Vol. 17, Issue 2
  • DOI: 10.1002/sia.740170206

Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
journal, January 2011

  • Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja108085d

Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives
journal, April 2012

  • Matyjaszewski, Krzysztof
  • Macromolecules, Vol. 45, Issue 10, p. 4015-4039
  • DOI: 10.1021/ma3001719

FTIR Study of the Oxidation of Porous Silicon
journal, February 1997

  • Mawhinney, Douglas B.; Glass, John A.; Yates, John T.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 7
  • DOI: 10.1021/jp963322r

Interfacial Properties of the a-Si∕Cu:Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries
journal, January 2006

  • Maranchi, J. P.; Hepp, A. F.; Evans, A. G.
  • Journal of The Electrochemical Society, Vol. 153, Issue 6
  • DOI: 10.1149/1.2184753

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Structural and electrochemical properties of fullerene-coated silicon thin film as anode materials for lithium secondary batteries
journal, January 2009


Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy
journal, February 2014

  • Ogata, K.; Salager, E.; Kerr, C. J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4217

Cracking mechanisms in lithiated silicon thin film electrodes
journal, November 2014


In Situ Conductivity, Impedance Spectroscopy, and Ex Situ Raman Spectra of Amorphous Silicon during the Insertion/Extraction of Lithium
journal, August 2007

  • Pollak, Elad; Salitra, Gregory; Baranchugov, Valentina
  • The Journal of Physical Chemistry C, Vol. 111, Issue 30
  • DOI: 10.1021/jp0729563

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Aqueous ARGET ATRP
journal, July 2012

  • Simakova, Antonina; Averick, Saadyah E.; Konkolewicz, Dominik
  • Macromolecules, Vol. 45, Issue 16
  • DOI: 10.1021/ma301303b

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

Roles of Oxygen and Interfacial Stabilization in Enhancing the Cycling Ability of Silicon Oxide Anodes for Rechargeable Lithium Batteries
journal, January 2013

  • Nguyen, Cao Cuong; Choi, Hyun; Song, Seung-Wan
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.118306jes

Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries
journal, June 2015

  • Choi, Jaecheol; Kim, Kyuman; Jeong, Jiseon
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 27
  • DOI: 10.1021/acsami.5b03364

Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry
journal, January 2016

  • Fears, T. M.; Doucet, M.; Browning, J. F.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
  • DOI: 10.1039/C6CP00978F

    Works referencing / citing this record:

    Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability
    journal, July 2019


    Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability
    journal, July 2019