DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catalysis of Ground State cis → trans Isomerization of Bacteriorhodopsin’s Retinal Chromophore by a Hydrogen-Bond Network

Abstract

For the photocycle of the membrane protein bacteriorhodopsin to proceed efficiently, the thermal 13-cis to all-trans back-isomerization of the retinal chromophore must return the protein to its resting state on a time-scale of milliseconds. Here, we report on quantum mechanical/molecular mechanical energy calculations examining the structural and energetic determinants of the retinal cis–trans isomerization in the protein environment. The results suggest that a hydrogen-bonded network consisting of the retinal Schiff base, active site amino acid residues, and water molecules can stabilize the twisted retinal, thus reducing the intrinsic energy cost of the cis–trans thermal isomerization barrier.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5]
  1. Freie Univ., Berlin (Germany). Dept. of Physical and Theoretical Chemistry, Theoretical Molecular Biophysics, Inst. for Chemistry und Biochemistry
  2. Technische Univ. Braunschweig (Germany). Inst. of Physical and Theoretical Chemistry; BASF SE, Ludwigshafen am Rhein (Germany)
  3. Freie Univ., Berlin (Germany). Dept. of Physics, Theoretical Molecular Biophysics
  4. Karlsruhe Inst. of Technology (KIT) (Germany). Inst. for Physical Chemistry, Dept. of Theoretical Chemical Biology
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Molecular Biophysics; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Molecular and Cellular Biology
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1462860
Grant/Contract Number:  
AC05-00OR22725; EL 206/8-1
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Membrane Biology
Additional Journal Information:
Journal Volume: 251; Journal Issue: 3; Journal ID: ISSN 0022-2631
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Bacteriorhodopsin; Retinal; Isomerization; QM/MM; Energy; Calculations

Citation Formats

Elghobashi-Meinhardt, Nadia, Phatak, Prasad, Bondar, Ana-Nicoleta, Elstner, Marcus, and Smith, Jeremy C. Catalysis of Ground State cis → trans Isomerization of Bacteriorhodopsin’s Retinal Chromophore by a Hydrogen-Bond Network. United States: N. p., 2018. Web. doi:10.1007/s00232-018-0027-x.
Elghobashi-Meinhardt, Nadia, Phatak, Prasad, Bondar, Ana-Nicoleta, Elstner, Marcus, & Smith, Jeremy C. Catalysis of Ground State cis → trans Isomerization of Bacteriorhodopsin’s Retinal Chromophore by a Hydrogen-Bond Network. United States. https://doi.org/10.1007/s00232-018-0027-x
Elghobashi-Meinhardt, Nadia, Phatak, Prasad, Bondar, Ana-Nicoleta, Elstner, Marcus, and Smith, Jeremy C. Thu . "Catalysis of Ground State cis → trans Isomerization of Bacteriorhodopsin’s Retinal Chromophore by a Hydrogen-Bond Network". United States. https://doi.org/10.1007/s00232-018-0027-x. https://www.osti.gov/servlets/purl/1462860.
@article{osti_1462860,
title = {Catalysis of Ground State cis → trans Isomerization of Bacteriorhodopsin’s Retinal Chromophore by a Hydrogen-Bond Network},
author = {Elghobashi-Meinhardt, Nadia and Phatak, Prasad and Bondar, Ana-Nicoleta and Elstner, Marcus and Smith, Jeremy C.},
abstractNote = {For the photocycle of the membrane protein bacteriorhodopsin to proceed efficiently, the thermal 13-cis to all-trans back-isomerization of the retinal chromophore must return the protein to its resting state on a time-scale of milliseconds. Here, we report on quantum mechanical/molecular mechanical energy calculations examining the structural and energetic determinants of the retinal cis–trans isomerization in the protein environment. The results suggest that a hydrogen-bonded network consisting of the retinal Schiff base, active site amino acid residues, and water molecules can stabilize the twisted retinal, thus reducing the intrinsic energy cost of the cis–trans thermal isomerization barrier.},
doi = {10.1007/s00232-018-0027-x},
journal = {Journal of Membrane Biology},
number = 3,
volume = 251,
place = {United States},
year = {Thu Mar 08 00:00:00 EST 2018},
month = {Thu Mar 08 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: The composition of the structural models studied is listed for each of the five paths; N’ refers to the N’ crystal structure (Schobert 2003) and O refers to the O-like crystal structure (Okumura 2005).

Save / Share:

Works referenced in this record:

Key Role of Active-Site Water Molecules in Bacteriorhodopsin Proton-Transfer Reactions
journal, November 2008

  • Bondar, Ana-Nicoleta; Baudry, Jerome; Suhai, Sándor
  • The Journal of Physical Chemistry B, Vol. 112, Issue 47
  • DOI: 10.1021/jp801916f

Thermodynamics and energy coupling in the bacteriorhodopsin photocycle
journal, May 1991


Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate
journal, October 2001

  • Rouhani, Shahab; Cartailler, Jean-Philippe; Facciotti, Marc T.
  • Journal of Molecular Biology, Vol. 313, Issue 3
  • DOI: 10.1006/jmbi.2001.5066

QM/MM investigation of the hydrogen-bonding interactions in putative K and early-M intermediates of the bacteriorhodopsin photocycle
journal, September 2005


Structure of bacteriorhodopsin at 1.55 Å resolution
journal, August 1999

  • Luecke, Hartmut; Schobert, Brigitte; Richter, Hans-Thomas
  • Journal of Molecular Biology, Vol. 291, Issue 4
  • DOI: 10.1006/jmbi.1999.3027

Molecular mechanism of protein-retinal coupling in bacteriorhodopsin.
journal, November 1995

  • Delaney, J. K.; Schweiger, U.; Subramaniam, S.
  • Proceedings of the National Academy of Sciences, Vol. 92, Issue 24
  • DOI: 10.1073/pnas.92.24.11120

A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations
journal, July 1990

  • Field, Martin J.; Bash, Paul A.; Karplus, Martin
  • Journal of Computational Chemistry, Vol. 11, Issue 6
  • DOI: 10.1002/jcc.540110605

CHARMM: A program for macromolecular energy, minimization, and dynamics calculations
journal, July 1983

  • Brooks, Bernard R.; Bruccoleri, Robert E.; Olafson, Barry D.
  • Journal of Computational Chemistry, Vol. 4, Issue 2
  • DOI: 10.1002/jcc.540040211

Infrared Difference Spectra of the Intermediates L, M, N, and O of the Bacteriorhodopsin Photoreaction Obtained by Time-Resolved Attenuated Total Reflection Spectroscopy
journal, December 1997

  • Zscherp, Christian; Heberle, Joachim
  • The Journal of Physical Chemistry B, Vol. 101, Issue 49
  • DOI: 10.1021/jp971047i

From Femtoseconds to Biology: Mechanism of Bacteriorhodopsin's Light-Driven Proton Pump
journal, June 1991


Ground-state properties of the retinal molecule: from quantum mechanical to classical mechanical computations of retinal proteins
journal, October 2011

  • Bondar, Ana-Nicoleta; Knapp-Mohammady, Michaela; Suhai, Sándor
  • Theoretical Chemistry Accounts, Vol. 130, Issue 4-6
  • DOI: 10.1007/s00214-011-1054-1

Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps
journal, January 1999


Bacteriorhodopsin
journal, March 2004


Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution
journal, August 1999


Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Kinetic and Thermodynamic Study of the Bacteriorhodopsin Photocycle over a Wide pH Range
journal, December 1998


Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

The Retinal Conformation and its Environment in Rhodopsin in Light of a New 2.2Å Crystal Structure
journal, September 2004

  • Okada, Tetsuji; Sugihara, Minoru; Bondar, Ana-Nicoleta
  • Journal of Molecular Biology, Vol. 342, Issue 2
  • DOI: 10.1016/j.jmb.2004.07.044

11- cis -Retinal Protonated Schiff Base:  Influence of the Protein Environment on the Geometry of the Rhodopsin Chromophore
journal, December 2002

  • Sugihara, Minoru; Buss, Volker; Entel, Peter
  • Biochemistry, Vol. 41, Issue 51
  • DOI: 10.1021/bi020533f

Performance of the AM1, PM3, and SCC-DFTB methods in the study of conjugated Schiff base molecules
journal, March 2002


Combining Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) with Molecular Mechanics by the Generalized Hybrid Orbital (GHO) Method
journal, June 2004

  • Pu, Jingzhi; Gao, Jiali; Truhlar, Donald G.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 25
  • DOI: 10.1021/jp049529z

Reaction path study of helix formation in tetrapeptides: Effect of side chains
journal, January 1991

  • Choi, Chyung; Elber, Ron
  • The Journal of Chemical Physics, Vol. 94, Issue 1
  • DOI: 10.1063/1.460343

Magnetic Resonance Studies of the Bacteriorhodopsin Pump Cycle
journal, June 2002


Tuning of Retinal Twisting in Bacteriorhodopsin Controls the Directionality of the Early Photocycle Steps
journal, August 2005

  • Bondar, Ana-Nicoleta; Fischer, Stefan; Suhai, Sándor
  • The Journal of Physical Chemistry B, Vol. 109, Issue 31
  • DOI: 10.1021/jp0531255

All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins
journal, April 1998

  • MacKerell, A. D.; Bashford, D.; Bellott, M.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 18
  • DOI: 10.1021/jp973084f

A Self-Consistent Charge Density-Functional Based Tight-Binding Scheme for Large Biomolecules
journal, January 2000


A Critical Evaluation of Different QM/MM Frontier Treatments with SCC-DFTB as the QM Method
journal, May 2005

  • König, P. H.; Hoffmann, M.; Frauenheim, Th.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 18
  • DOI: 10.1021/jp0442347

Mechanism by which Untwisting of Retinal Leads to Productive Bacteriorhodopsin Photocycle States
journal, August 2014

  • Wolter, Tino; Elstner, Marcus; Fischer, Stefan
  • The Journal of Physical Chemistry B, Vol. 119, Issue 6
  • DOI: 10.1021/jp505818r

Mechanism of Primary Proton Transfer in Bacteriorhodopsin
journal, July 2004


Role of Isomerization Barriers in the p K a Control of the Retinal Schiff Base:  A Density Functional Study
journal, May 1999

  • Tajkhorshid, Emadeddin; Paizs, Béla; Suhai, Sándor
  • The Journal of Physical Chemistry B, Vol. 103, Issue 21
  • DOI: 10.1021/jp982625d

A three-dimensional movie of structural changes in bacteriorhodopsin
journal, December 2016

  • Nango, Eriko; Royant, Antoine; Kubo, Minoru
  • Science, Vol. 354, Issue 6319, p. 1552-1557
  • DOI: 10.1126/science.aah3497

Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: A theoretical analysis of structural elements
journal, March 2007

  • Bondar, Ana-Nicoleta; Suhai, Sándor; Fischer, Stefan
  • Journal of Structural Biology, Vol. 157, Issue 3
  • DOI: 10.1016/j.jsb.2006.10.007

Long-Distance Proton Transfer with a Break in the Bacteriorhodopsin Active Site
journal, May 2009

  • Phatak, Prasad; Frähmcke, Jan S.; Wanko, Marius
  • Journal of the American Chemical Society, Vol. 131, Issue 20
  • DOI: 10.1021/ja809767v

MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry
journal, June 1995

  • Gerber, Paul R.; M�ller, Klaus
  • Journal of Computer-Aided Molecular Design, Vol. 9, Issue 3
  • DOI: 10.1007/BF00124456

Chromophore structure in bacteriorhodopsin's O640 photointermediate
journal, December 1983

  • Smith, Steven O.; Pardoen, Johannes A.; Mulder, Patrick P. J.
  • Biochemistry, Vol. 22, Issue 26
  • DOI: 10.1021/bi00295a016

A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method
journal, January 2001

  • Cui, Qiang; Elstner, Marcus; Kaxiras, Efthimios
  • The Journal of Physical Chemistry B, Vol. 105, Issue 2
  • DOI: 10.1021/jp0029109

Crystal Structures of Acid Blue and Alkaline Purple Forms of Bacteriorhodopsin
journal, August 2005

  • Okumura, Hideo; Murakami, Midori; Kouyama, Tsutomu
  • Journal of Molecular Biology, Vol. 351, Issue 3
  • DOI: 10.1016/j.jmb.2005.06.026

The structure and mechanism of the family of retinal proteins from halophilic archaea
journal, August 1998


Electron Paramagnetic Resonance Study of Structural Changes in the O Photointermediate of Bacteriorhodopsin
journal, February 2007

  • Chen, Deliang; Wang, Jennifer M.; Lanyi, Janos K.
  • Journal of Molecular Biology, Vol. 366, Issue 3
  • DOI: 10.1016/j.jmb.2006.12.017

Mechanism of pore opening in the calcium-activated chloride channel TMEM16A
journal, February 2021


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.