skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electroluminescence TPCs at the thermal diffusion limit

Abstract

The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the 136Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/m for pure xenon down to 2.5 mm/m using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolutionmore » as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.[Figure not available: see fulltext.]« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Org.:
NEXT Collaboration
OSTI Identifier:
1462728
Alternate Identifier(s):
OSTI ID: 1550849
Report Number(s):
arXiv:1806.05891; FERMILAB-PUB-18-290-CD
Journal ID: ISSN 1029-8479; 1678111; TRN: US1902192
Grant/Contract Number:  
AC02-07CH11359; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2019; Journal Issue: 1; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Dark Matter and Double Beta Decay (experiments); Photon production; Particle correlations and fluctuations; Rare decay

Citation Formats

Henriques, C. A. O., Monteiro, C. M. B., González-Díaz, D., Azevedo, C. D. R., Freitas, E. D. C., Mano, R. D. P., Jorge, M. R., Fernandes, A. F. M., Gómez-Cadenas, J. J., Fernandes, L. M. P., Adams, C., Álvarez, V., Arazi, L., Bailey, K., Ballester, F., Benlloch-Rodríguez, J. M., Borges, F. I. G. M., Botas, A., Cárcel, S., Carrión, J. V., Cebrián, S., Conde, C. A. N., Díaz, J., Diesburg, M., Escada, J., Esteve, R., Felkai, R., Ferrario, P., Ferreira, A. L., Generowicz, J., Goldschmidt, A., Guenette, R., Gutiérrez, R. M., Hafidi, K., Hauptman, J., Hernandez, A. I., Hernando Morata, J. A., Herrero, V., Johnston, S., Jones, B. J. P., Kekic, M., Labarga, L., Laing, A., Lebrun, P., López-March, N., Losada, M., Martín-Albo, J., Martínez, A., Martínez-Lema, G., McDonald, A., Monrabal, F., Mora, F. J., Muñoz Vidal, J., Musti, M., Nebot-Guinot, M., Novella, P., Nygren, D. R., Palmeiro, B., Para, A., Pérez, J., Psihas, F., Querol, M., Renner, J., Repond, J., Riordan, S., Ripoll, L., Rodríguez, J., Rogers, L., Romo-Luque, C., Santos, F. P., dos Santos, J. M. F., Simón, A., Sofka, C., Sorel, M., Stiegler, T., Toledo, J. F., Torrent, J., Veloso, J. F. C. A., Webb, R., White, J. T., and Yahlali, N. Electroluminescence TPCs at the thermal diffusion limit. United States: N. p., 2019. Web. doi:10.1007/JHEP01(2019)027.
Henriques, C. A. O., Monteiro, C. M. B., González-Díaz, D., Azevedo, C. D. R., Freitas, E. D. C., Mano, R. D. P., Jorge, M. R., Fernandes, A. F. M., Gómez-Cadenas, J. J., Fernandes, L. M. P., Adams, C., Álvarez, V., Arazi, L., Bailey, K., Ballester, F., Benlloch-Rodríguez, J. M., Borges, F. I. G. M., Botas, A., Cárcel, S., Carrión, J. V., Cebrián, S., Conde, C. A. N., Díaz, J., Diesburg, M., Escada, J., Esteve, R., Felkai, R., Ferrario, P., Ferreira, A. L., Generowicz, J., Goldschmidt, A., Guenette, R., Gutiérrez, R. M., Hafidi, K., Hauptman, J., Hernandez, A. I., Hernando Morata, J. A., Herrero, V., Johnston, S., Jones, B. J. P., Kekic, M., Labarga, L., Laing, A., Lebrun, P., López-March, N., Losada, M., Martín-Albo, J., Martínez, A., Martínez-Lema, G., McDonald, A., Monrabal, F., Mora, F. J., Muñoz Vidal, J., Musti, M., Nebot-Guinot, M., Novella, P., Nygren, D. R., Palmeiro, B., Para, A., Pérez, J., Psihas, F., Querol, M., Renner, J., Repond, J., Riordan, S., Ripoll, L., Rodríguez, J., Rogers, L., Romo-Luque, C., Santos, F. P., dos Santos, J. M. F., Simón, A., Sofka, C., Sorel, M., Stiegler, T., Toledo, J. F., Torrent, J., Veloso, J. F. C. A., Webb, R., White, J. T., & Yahlali, N. Electroluminescence TPCs at the thermal diffusion limit. United States. doi:https://doi.org/10.1007/JHEP01(2019)027
Henriques, C. A. O., Monteiro, C. M. B., González-Díaz, D., Azevedo, C. D. R., Freitas, E. D. C., Mano, R. D. P., Jorge, M. R., Fernandes, A. F. M., Gómez-Cadenas, J. J., Fernandes, L. M. P., Adams, C., Álvarez, V., Arazi, L., Bailey, K., Ballester, F., Benlloch-Rodríguez, J. M., Borges, F. I. G. M., Botas, A., Cárcel, S., Carrión, J. V., Cebrián, S., Conde, C. A. N., Díaz, J., Diesburg, M., Escada, J., Esteve, R., Felkai, R., Ferrario, P., Ferreira, A. L., Generowicz, J., Goldschmidt, A., Guenette, R., Gutiérrez, R. M., Hafidi, K., Hauptman, J., Hernandez, A. I., Hernando Morata, J. A., Herrero, V., Johnston, S., Jones, B. J. P., Kekic, M., Labarga, L., Laing, A., Lebrun, P., López-March, N., Losada, M., Martín-Albo, J., Martínez, A., Martínez-Lema, G., McDonald, A., Monrabal, F., Mora, F. J., Muñoz Vidal, J., Musti, M., Nebot-Guinot, M., Novella, P., Nygren, D. R., Palmeiro, B., Para, A., Pérez, J., Psihas, F., Querol, M., Renner, J., Repond, J., Riordan, S., Ripoll, L., Rodríguez, J., Rogers, L., Romo-Luque, C., Santos, F. P., dos Santos, J. M. F., Simón, A., Sofka, C., Sorel, M., Stiegler, T., Toledo, J. F., Torrent, J., Veloso, J. F. C. A., Webb, R., White, J. T., and Yahlali, N. Thu . "Electroluminescence TPCs at the thermal diffusion limit". United States. doi:https://doi.org/10.1007/JHEP01(2019)027. https://www.osti.gov/servlets/purl/1462728.
@article{osti_1462728,
title = {Electroluminescence TPCs at the thermal diffusion limit},
author = {Henriques, C. A. O. and Monteiro, C. M. B. and González-Díaz, D. and Azevedo, C. D. R. and Freitas, E. D. C. and Mano, R. D. P. and Jorge, M. R. and Fernandes, A. F. M. and Gómez-Cadenas, J. J. and Fernandes, L. M. P. and Adams, C. and Álvarez, V. and Arazi, L. and Bailey, K. and Ballester, F. and Benlloch-Rodríguez, J. M. and Borges, F. I. G. M. and Botas, A. and Cárcel, S. and Carrión, J. V. and Cebrián, S. and Conde, C. A. N. and Díaz, J. and Diesburg, M. and Escada, J. and Esteve, R. and Felkai, R. and Ferrario, P. and Ferreira, A. L. and Generowicz, J. and Goldschmidt, A. and Guenette, R. and Gutiérrez, R. M. and Hafidi, K. and Hauptman, J. and Hernandez, A. I. and Hernando Morata, J. A. and Herrero, V. and Johnston, S. and Jones, B. J. P. and Kekic, M. and Labarga, L. and Laing, A. and Lebrun, P. and López-March, N. and Losada, M. and Martín-Albo, J. and Martínez, A. and Martínez-Lema, G. and McDonald, A. and Monrabal, F. and Mora, F. J. and Muñoz Vidal, J. and Musti, M. and Nebot-Guinot, M. and Novella, P. and Nygren, D. R. and Palmeiro, B. and Para, A. and Pérez, J. and Psihas, F. and Querol, M. and Renner, J. and Repond, J. and Riordan, S. and Ripoll, L. and Rodríguez, J. and Rogers, L. and Romo-Luque, C. and Santos, F. P. and dos Santos, J. M. F. and Simón, A. and Sofka, C. and Sorel, M. and Stiegler, T. and Toledo, J. F. and Torrent, J. and Veloso, J. F. C. A. and Webb, R. and White, J. T. and Yahlali, N.},
abstractNote = {The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the 136Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/m for pure xenon down to 2.5 mm/m using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.[Figure not available: see fulltext.]},
doi = {10.1007/JHEP01(2019)027},
journal = {Journal of High Energy Physics (Online)},
number = 1,
volume = 2019,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search
journal, May 2009

  • Nygren, David
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 603, Issue 3
  • DOI: 10.1016/j.nima.2009.01.222

Fano factor implications from gas scintillation proportional counter measurements
journal, July 1989

  • Kowalski, T. Z.; Smith, A.; Peacock, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 279, Issue 3
  • DOI: 10.1016/0168-9002(89)91304-1

Micromegas operation in high pressure xenon: charge and scintillation readout
journal, February 2011


Emission spectra from ArXe, ArKr, ArN2, ArCH4, ArCO2 and XeN2 gas scintillation proportional counters
journal, February 1983

  • Takahashi, Tetsuhiko; Himi, Susumu; Suzuki, Masayo
  • Nuclear Instruments and Methods in Physics Research, Vol. 205, Issue 3
  • DOI: 10.1016/0167-5087(83)90028-5

An RF-only ion-funnel for extraction from high-pressure gases
journal, March 2015


Development of portable gas proportional scintillation counters for x-ray spectrometry: Development of portable gas proportional scintillation counters
journal, November 2001

  • dos Santos, J. M. F.; Lopes, J. A. M.; Veloso, J. F. C. A.
  • X-Ray Spectrometry, Vol. 30, Issue 6
  • DOI: 10.1002/xrs.510

An argon gas proportional scintillation counter with UV avalanche photodiode scintillation readout
journal, August 2001

  • Monteiro, C. M. B.; Lopes, J. A. M.; Simoes, P. C. P. S.
  • IEEE Transactions on Nuclear Science, Vol. 48, Issue 4
  • DOI: 10.1109/23.958727

A technique for searching for the 2K capture in 124Xe with a copper proportional counter
journal, December 2015

  • Gavrilyuk, Yu. M.; Gangapshev, A. M.; Kazalov, V. V.
  • Physics of Atomic Nuclei, Vol. 78, Issue 13
  • DOI: 10.1134/S1063778815130098

Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mo stretchy="false">(</mml:mo><mml:mn>0</mml:mn><mml:mi>ν</mml:mi><mml:mi>β</mml:mi><mml:mi>β</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> search
journal, February 2010


Driftless gas proportional scintillation counter pulse analysis using digital processing techniques: Driftless GPSC using digital processing techniques
journal, September 2001

  • Simões, P. C. P. S.; dos Santos, J. M. F.; Conde, C. A. N.
  • X-Ray Spectrometry, Vol. 30, Issue 5
  • DOI: 10.1002/xrs.508

Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search
journal, July 2012


Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives
journal, January 2018

  • Azevedo, C. D. R.; González-Díaz, D.; Biagi, S. F.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 877
  • DOI: 10.1016/j.nima.2017.08.049

A xenon gas proportional scintillation counter with a UV-sensitive large-area avalanche photodiode
journal, June 2001

  • Lopes, J. A. M.; dos Santos, J. M. F.; Morgado, R. E.
  • IEEE Transactions on Nuclear Science, Vol. 48, Issue 3
  • DOI: 10.1109/23.940072

Secondary scintillation yield from gaseous micropattern electron multipliers in direct Dark Matter detection
journal, June 2009


A large area, gas scintillation proportional counter
journal, July 1979


A new method for pulse analysis of driftless-gas proportional scintillation counters
journal, June 2003

  • Simões, P. C. P. S.; Covita, D. S.; Veloso, J. F. C. A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 505, Issue 1-2
  • DOI: 10.1016/S0168-9002(03)01062-3

Addendum: Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter
journal, December 2010


Microbulk MicrOMEGAs for the search of 0νββ of 136 Xe in the PandaX-III experiment
journal, April 2016


Search for ββ decay in 136Xe: new results from the Gotthard experiment
journal, August 1998


Full-energy absorption of x-ray energies near the Xe L- and K-photoionization thresholds in xenon gas detectors: Simulation and experimental results
journal, September 1997

  • Dias, T. H. V. T.; dos Santos, J. M. F.; Rachinhas, P. J. B. M.
  • Journal of Applied Physics, Vol. 82, Issue 6
  • DOI: 10.1063/1.366105

Secondary scintillation yield in pure argon
journal, October 2008


An homeopathic cure to pure Xenon large diffusion
journal, February 2016


Secondary scintillation yield in pure xenon
journal, May 2007


Microbulk MicrOMEGAs for the search of 0νββ of 136 Xe in the PandaX-III experiment
journal, April 2016


Secondary scintillation yield in pure xenon
journal, May 2007


Micromegas operation in high pressure xenon: charge and scintillation readout
journal, February 2011


An homeopathic cure to pure Xenon large diffusion
journal, February 2016


Addendum: Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter
journal, December 2010


    Works referencing / citing this record:

    Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures
    journal, August 2019