skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries

Abstract

Lithium titanate and titanium dioxide are two best-known high-performance electrodes that can cycle around 10,000 times in aprotic lithium ion electrolytes. Here we show there exists more lithium titanate hydrates with superfast and stable cycling. That is, water promotes structural diversity and nanostructuring of compounds, but does not necessarily degrade electrochemical cycling stability or performance in aprotic electrolytes. As a lithium ion battery anode, our multi-phase lithium titanate hydrates show a specific capacity of about 130 mA h g–1 at ~35 C (fully charged within ~100 s) and sustain more than 10,000 cycles with capacity fade of only 0.001% per cycle. In situ synchrotron diffraction reveals no 2-phase transformations, but a single solid-solution behavior during battery cycling. Here, so instead of just a nanostructured intermediate to be calcined, lithium titanate hydrates can be the desirable final destination.

Authors:
 [1];  [2];  [3];  [2];  [4];  [4];  [4];  [4];  [2];  [2];  [4];  [2]; ORCiD logo [4]; ORCiD logo [3]
  1. Tsinghua Univ., Beijing (China); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Tsinghua Univ., Beijing (China)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NNSFC); Ministry of Education of the People's Republic of China; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1462488
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Wang, Shitong, Quan, Wei, Zhu, Zhi, Yang, Yong, Liu, Qi, Ren, Yang, Zhang, Xiaoyi, Xu, Rui, Hong, Ye, Zhang, Zhongtai, Amine, Khalil, Tang, Zilong, Lu, Jun, and Li, Ju. Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. United States: N. p., 2017. Web. doi:10.1038/s41467-017-00574-9.
Wang, Shitong, Quan, Wei, Zhu, Zhi, Yang, Yong, Liu, Qi, Ren, Yang, Zhang, Xiaoyi, Xu, Rui, Hong, Ye, Zhang, Zhongtai, Amine, Khalil, Tang, Zilong, Lu, Jun, & Li, Ju. Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. United States. doi:10.1038/s41467-017-00574-9.
Wang, Shitong, Quan, Wei, Zhu, Zhi, Yang, Yong, Liu, Qi, Ren, Yang, Zhang, Xiaoyi, Xu, Rui, Hong, Ye, Zhang, Zhongtai, Amine, Khalil, Tang, Zilong, Lu, Jun, and Li, Ju. Wed . "Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries". United States. doi:10.1038/s41467-017-00574-9. https://www.osti.gov/servlets/purl/1462488.
@article{osti_1462488,
title = {Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries},
author = {Wang, Shitong and Quan, Wei and Zhu, Zhi and Yang, Yong and Liu, Qi and Ren, Yang and Zhang, Xiaoyi and Xu, Rui and Hong, Ye and Zhang, Zhongtai and Amine, Khalil and Tang, Zilong and Lu, Jun and Li, Ju},
abstractNote = {Lithium titanate and titanium dioxide are two best-known high-performance electrodes that can cycle around 10,000 times in aprotic lithium ion electrolytes. Here we show there exists more lithium titanate hydrates with superfast and stable cycling. That is, water promotes structural diversity and nanostructuring of compounds, but does not necessarily degrade electrochemical cycling stability or performance in aprotic electrolytes. As a lithium ion battery anode, our multi-phase lithium titanate hydrates show a specific capacity of about 130 mA h g–1 at ~35 C (fully charged within ~100 s) and sustain more than 10,000 cycles with capacity fade of only 0.001% per cycle. In situ synchrotron diffraction reveals no 2-phase transformations, but a single solid-solution behavior during battery cycling. Here, so instead of just a nanostructured intermediate to be calcined, lithium titanate hydrates can be the desirable final destination.},
doi = {10.1038/s41467-017-00574-9},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 44 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanostructured high-energy cathode materials for advanced lithium batteries
journal, October 2012

  • Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3435

Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications
journal, July 2007

  • Chen, Xiaobo; Mao, Samuel S.
  • Chemical Reviews, Vol. 107, Issue 7
  • DOI: 10.1021/cr0500535

A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density
journal, January 2013

  • Zhang, Fan; Zhang, Tengfei; Yang, Xi
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee40509e

Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals
journal, January 2011


Capacity Fade Mechanism of Li 4 Ti 5 O 12 Nanosheet Anode
journal, November 2016

  • Chiu, Hsien-Chieh; Lu, Xia; Zhou, Jigang
  • Advanced Energy Materials, Vol. 7, Issue 5
  • DOI: 10.1002/aenm.201601825

Nanoionics: ion transport and electrochemical storage in confined systems
journal, November 2005

  • Maier, J.
  • Nature Materials, Vol. 4, Issue 11, p. 805-815
  • DOI: 10.1038/nmat1513

Ti-based compounds as anode materials for Li-ion batteries
journal, January 2012

  • Zhu, Guan-Nan; Wang, Yong-Gang; Xia, Yong-Yao
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee03410g

Decomposition reaction of LiPF6-based electrolytes for lithium ion cells
journal, June 2006


Size Effects in the Li 4+ x Ti 5 O 12 Spinel
journal, December 2009

  • Borghols, W. J. H.; Wagemaker, M.; Lafont, U.
  • Journal of the American Chemical Society, Vol. 131, Issue 49
  • DOI: 10.1021/ja902423e

A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12
journal, December 2006

  • Wagemaker, M.; Simon, D. R.; Kelder, E. M.
  • Advanced Materials, Vol. 18, Issue 23
  • DOI: 10.1002/adma.200601636

Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries
journal, October 2014

  • Wang, Kai-Xue; Li, Xin-Hao; Chen, Jie-Sheng
  • Advanced Materials, Vol. 27, Issue 3
  • DOI: 10.1002/adma.201402962

A comprehensive review of Li 4 Ti 5 O 12 -based electrodes for lithium-ion batteries: The latest advancements and future perspectives
journal, December 2015


Ultrathin Anatase TiO 2 Nanosheets Embedded with TiO 2 -B Nanodomains for Lithium-Ion Storage: Capacity Enhancement by Phase Boundaries
journal, December 2014


High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Nanostructured Oxides in Chemistry:  Characterization and Properties
journal, September 2004

  • Fernández-García, M.; Martínez-Arias, A.; Hanson, J. C.
  • Chemical Reviews, Vol. 104, Issue 9
  • DOI: 10.1021/cr030032f

Titanium-Based Anode Materials for Safe Lithium-Ion Batteries
journal, July 2012

  • Chen, Zonghai; Belharouak, Ilias; Sun, Y. -K.
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200698

Hydrogenated surface disorder enhances lithium ion battery performance
journal, September 2013


A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration
journal, April 2015


Topotactic Transformation Reaction from Layered Titanate Nanosheets into Anatase Nanocrystals
journal, October 2009

  • Wen, Puhong; Ishikawa, Yoshie; Itoh, Hiroshi
  • The Journal of Physical Chemistry C, Vol. 113, Issue 47
  • DOI: 10.1021/jp908181e

Titanium Oxide Nanosheets: Graphene Analogues with Versatile Functionalities
journal, April 2014

  • Wang, Lianzhou; Sasaki, Takayoshi
  • Chemical Reviews, Vol. 114, Issue 19
  • DOI: 10.1021/cr400627u

Detection of Hydroxyl Ions in Bone Mineral by Solid-State NMR Spectroscopy
journal, May 2003


Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

Rate-Induced Solubility and Suppression of the First-Order Phase Transition in Olivine LiFePO 4
journal, April 2014

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404285y

Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li x TiO 2
journal, April 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; Mulder, Fokko M.
  • Journal of the American Chemical Society, Vol. 129, Issue 14
  • DOI: 10.1021/ja067733p

Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices
journal, August 2008


High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
journal, April 2013

  • Augustyn, Veronica; Come, Jérémy; Lowe, Michael A.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3601

Where Do Batteries End and Supercapacitors Begin?
journal, March 2014


H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability
journal, January 2005


Nanosize Storage Properties in Spinel Li 4 Ti 5 O 12 Explained by Anisotropic Surface Lithium Insertion
journal, September 2012

  • Ganapathy, Swapna; Wagemaker, Marnix
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn302278m

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries
journal, January 2013

  • Hong, Zhensheng; Wei, Mingdeng
  • Journal of Materials Chemistry A, Vol. 1, Issue 14
  • DOI: 10.1039/c2ta01312f

In Situ Observation of Random Solid Solution Zone in LiFePO 4 Electrode
journal, June 2014

  • Niu, Junjie; Kushima, Akihiro; Qian, Xiaofeng
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501415b

Lepidocrocite-type Layered Titanate Structures: New Lithium and Sodium Ion Intercalation Anode Materials
journal, April 2014

  • Shirpour, Mona; Cabana, Jordi; Doeff, Marca
  • Chemistry of Materials, Vol. 26, Issue 8
  • DOI: 10.1021/cm500342m