skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features

Abstract

Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this paper, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. Finally, more broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.

Authors:
ORCiD logo; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States); Univ. of Hasselt, Diepenbeek (Belgium); Interuniversity Microelectronics Centre (IMEC), Diepenbeek (Belgium)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); Research Foundation - Flanders (FWO) (Belgium)
OSTI Identifier:
1462457
Alternate Identifier(s):
OSTI ID: 1462355
Grant/Contract Number:  
[AC02-76SF00515; ECCS-1542152; G0E7417N]
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
[Journal Name: Proceedings of the National Academy of Sciences of the United States of America]; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; nucleation; diamond; nanomaterials; thermodynamics; plasma synthesis

Citation Formats

Gebbie, Matthew A., Ishiwata, Hitoshi, McQuade, Patrick J., Petrak, Vaclav, Taylor, Andrew, Freiwald, Christopher, Dahl, Jeremy E., Carlson, Robert M. K., Fokin, Andrey A., Schreiner, Peter R., Shen, Zhi-Xun, Nesladek, Milos, and Melosh, Nicholas A. Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features. United States: N. p., 2018. Web. doi:10.1073/pnas.1803654115.
Gebbie, Matthew A., Ishiwata, Hitoshi, McQuade, Patrick J., Petrak, Vaclav, Taylor, Andrew, Freiwald, Christopher, Dahl, Jeremy E., Carlson, Robert M. K., Fokin, Andrey A., Schreiner, Peter R., Shen, Zhi-Xun, Nesladek, Milos, & Melosh, Nicholas A. Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features. United States. doi:10.1073/pnas.1803654115.
Gebbie, Matthew A., Ishiwata, Hitoshi, McQuade, Patrick J., Petrak, Vaclav, Taylor, Andrew, Freiwald, Christopher, Dahl, Jeremy E., Carlson, Robert M. K., Fokin, Andrey A., Schreiner, Peter R., Shen, Zhi-Xun, Nesladek, Milos, and Melosh, Nicholas A. Wed . "Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features". United States. doi:10.1073/pnas.1803654115.
@article{osti_1462457,
title = {Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features},
author = {Gebbie, Matthew A. and Ishiwata, Hitoshi and McQuade, Patrick J. and Petrak, Vaclav and Taylor, Andrew and Freiwald, Christopher and Dahl, Jeremy E. and Carlson, Robert M. K. and Fokin, Andrey A. and Schreiner, Peter R. and Shen, Zhi-Xun and Nesladek, Milos and Melosh, Nicholas A.},
abstractNote = {Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this paper, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. Finally, more broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.},
doi = {10.1073/pnas.1803654115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1073/pnas.1803654115

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Multiple pathways of crystal nucleation in an extremely supersaturated aqueous potassium dihydrogen phosphate (KDP) solution droplet
journal, October 2016

  • Lee, Sooheyong; Wi, Haeng Sub; Jo, Wonhyuk
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 48
  • DOI: 10.1073/pnas.1604938113

Effect of hydrogen on the surface-energy anisotropy of diamond and silicon
journal, March 1998


Thermodynamics of metastable phase nucleation at the nanoscale
journal, July 2005


Nanometre-sized diamonds are more stable than graphite
journal, January 1990

  • Badziag, P.; Verwoerd, W. S.; Ellis, W. P.
  • Nature, Vol. 343, Issue 6255
  • DOI: 10.1038/343244a0

Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization
journal, April 2001


Silicon Chemistry in Fluorinated Chemical Vapor Deposition of Silicon Carbide
journal, January 2017

  • Stenberg, Pontus; Sukkaew, Pitsiri; Farkas, Ildiko
  • The Journal of Physical Chemistry C, Vol. 121, Issue 5
  • DOI: 10.1021/acs.jpcc.6b10849

Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization
journal, December 2013

  • Tan, Peng; Xu, Ning; Xu, Lei
  • Nature Physics, Vol. 10, Issue 1
  • DOI: 10.1038/nphys2817

Kinetic Reconstruction of the Free-Energy Landscape
journal, September 2008

  • Wedekind, Jan; Reguera, David
  • The Journal of Physical Chemistry B, Vol. 112, Issue 35
  • DOI: 10.1021/jp804014h

Homogeneous nucleation of silicon
journal, October 1994


A classical view on nonclassical nucleation
journal, September 2017

  • Smeets, Paul J. M.; Finney, Aaron R.; Habraken, Wouter J. E. M.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 38
  • DOI: 10.1073/pnas.1700342114

Crystallization by particle attachment in synthetic, biogenic, and geologic environments
journal, July 2015

  • De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.
  • Science, Vol. 349, Issue 6247
  • DOI: 10.1126/science.aaa6760

Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories
journal, June 2009


Quasi-planar nucleus structure in apoferritin crystallization
journal, August 2000

  • Yau, S. -T.; Vekilov, Peter G.
  • Nature, Vol. 406, Issue 6795
  • DOI: 10.1038/35020035

The two-step mechanism of nucleation of crystals in solution
journal, January 2010


Processing quantum information in diamond
journal, May 2006


Role of stacking disorder in ice nucleation
journal, November 2017

  • Lupi, Laura; Hudait, Arpa; Peters, Baron
  • Nature, Vol. 551, Issue 7679
  • DOI: 10.1038/nature24279

Nanocrystalline diamond
journal, May 2011


Kinetische Behandlung der Keimbildung in übersättigten Dämpfen
journal, January 1935


Isolation and Structure of Higher Diamondoids, Nanometer-Sized Diamond Molecules
journal, November 2002


Nanocrystalline Diamond Films
journal, August 1999


A holistic view of nucleation and self-assembly
journal, July 2017


Opportunities and challenges in liquid cell electron microscopy
journal, December 2015


Real-time molecular scale observation of crystal formation
journal, November 2016

  • Schreiber, Roy E.; Houben, Lothar; Wolf, Sharon G.
  • Nature Chemistry, Vol. 9, Issue 4
  • DOI: 10.1038/nchem.2675

The properties and applications of nanodiamonds
journal, December 2011

  • Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.209

Selective Preparation of Diamondoid Phosphonates
journal, May 2014

  • Fokin, Andrey A.; Yurchenko, Raisa I.; Tkachenko, Boryslav A.
  • The Journal of Organic Chemistry, Vol. 79, Issue 11
  • DOI: 10.1021/jo500793m

Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth
journal, February 2017


Chemical potential of carbon in the low pressure synthesis of diamond
journal, March 1996


A two-parameter extension of classical nucleation theory
journal, May 2015


Role of clusters in nonclassical nucleation and growth of protein crystals
journal, January 2014

  • Sleutel, Mike; Van Driessche, Alexander E. S.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 5
  • DOI: 10.1073/pnas.1309320111

Observing classical nucleation theory at work by monitoring phase transitions with molecular precision
journal, December 2014

  • Sleutel, Mike; Lutsko, Jim; Van Driessche, Alexander E. S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6598

Multistep nucleation of nanocrystals in aqueous solution
journal, October 2016

  • Loh, N. Duane; Sen, Soumyo; Bosman, Michel
  • Nature Chemistry, Vol. 9, Issue 1
  • DOI: 10.1038/nchem.2618

Rate of Nucleation in Condensed Systems
journal, January 1949

  • Turnbull, D.; Fisher, J. C.
  • The Journal of Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1063/1.1747055

The energetics of prenucleation clusters in lattice solutions
journal, December 2016

  • Legg, Benjamin A.; De Yoreo, James J.
  • The Journal of Chemical Physics, Vol. 145, Issue 21
  • DOI: 10.1063/1.4964489

Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases
journal, August 1988


Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM
journal, March 2014

  • Nielsen, Michael H.; Li, Dongsheng; Zhang, Hengzhong
  • Microscopy and Microanalysis, Vol. 20, Issue 2
  • DOI: 10.1017/S1431927614000294