DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The coordination chemistry of Cm III , Am III , and Ac III in nitrate solutions: an actinide L 3 -edge EXAFS study

Abstract

Understanding actinide(III) (AnIII = CmIII, AmIII, AcIII) solution-phase speciation is critical for controlling many actinide processing schemes, ranging from medical applications to reprocessing of spent nuclear fuel. Unfortunately, in comparison to most elements in the periodic table, AnIII speciation is often poorly defined in complexing aqueous solutions and in organic media. This neglect – in large part – is a direct result of the radioactive properties of these elements, which make them difficult to handle and acquire. Here in this paper, we surmounted some of the handling challenges associated with these exotic 5f-elements and characterized CmIII, AmIII, and AcIII using AnIII L3-edge X-ray absorption spectroscopy (XAS) as a function of increasing nitric acid (HNO3) concentration. Our results revealed that actinide aquo ions, An(H2O)x3+ (x = 9.6 ± 0.7, 8.9 ± 0.8, and 10.0 ± 0.9 for CmIII, AmIII, and AcIII), were the dominant species in dilute HNO3 (0.05 M). In concentrated HNO3 (16 M), shell-by-shell fitting of the extended X-ray fine structure (EXAFS) data showed the nitrate complexation increased, such that the average stoichiometries of Cm(NO3)4.1±0.7(H2O)5.7±1.3(1.1±0.2)-, Am(NO3)3.4±0.7(H2O)5.4±0.5(0.4±0.1)-, and Ac(NO3)2.3±1.7(H2O)8.3±5.2(0.7±0.5)+ were observed. Data obtained at the intermediate HNO3 concentration (4 M) were modeled as a linear combination of the 0.05 andmore » 16 M spectra. Here, for all three metals, the intermediate models showed larger contributions from the 0.05 M HNO3 spectra than from the 16 M HNO3 spectra. Additionally, these efforts enabled the Cm–NO3 and Ac–NO3 distances to be measured for the first time. Moreover, the AnIII L3-edge EXAFS results, contribute to the growing body of knowledge associated with CmIII, AmIII, and AcIII coordination chemistry, in particular toward advancing understanding of AnIII solution phase speciation.« less

Authors:
 [1];  [1];  [1];  [1];  [2]; ORCiD logo [1];  [3];  [1];  [4]
  1. Los Alamos National Laboratory,, USA
  2. Los Alamos National Laboratory,, USA, Department of Physics, University of Washington, Seattle
  3. Stanford University, USA
  4. Department of Physics, University of Washington, Seattle, USA
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1462444
Alternate Identifier(s):
OSTI ID: 1463561
Report Number(s):
LA-UR-18-22688
Journal ID: ISSN 2041-6520; CSHCBM
Grant/Contract Number:  
20180005DR; AC52-06NA25396; AC02-76SF00515
Resource Type:
Published Article
Journal Name:
Chemical Science
Additional Journal Information:
Journal Name: Chemical Science Journal Volume: 9 Journal Issue: 35; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Ferrier, Maryline G., Stein, Benjamin W., Bone, Sharon E., Cary, Samantha K., Ditter, Alexander S., Kozimor, Stosh A., Lezama Pacheco, Juan S., Mocko, Veronika, and Seidler, Gerald T. The coordination chemistry of Cm III , Am III , and Ac III in nitrate solutions: an actinide L 3 -edge EXAFS study. United Kingdom: N. p., 2018. Web. doi:10.1039/C8SC02270D.
Ferrier, Maryline G., Stein, Benjamin W., Bone, Sharon E., Cary, Samantha K., Ditter, Alexander S., Kozimor, Stosh A., Lezama Pacheco, Juan S., Mocko, Veronika, & Seidler, Gerald T. The coordination chemistry of Cm III , Am III , and Ac III in nitrate solutions: an actinide L 3 -edge EXAFS study. United Kingdom. https://doi.org/10.1039/C8SC02270D
Ferrier, Maryline G., Stein, Benjamin W., Bone, Sharon E., Cary, Samantha K., Ditter, Alexander S., Kozimor, Stosh A., Lezama Pacheco, Juan S., Mocko, Veronika, and Seidler, Gerald T. Mon . "The coordination chemistry of Cm III , Am III , and Ac III in nitrate solutions: an actinide L 3 -edge EXAFS study". United Kingdom. https://doi.org/10.1039/C8SC02270D.
@article{osti_1462444,
title = {The coordination chemistry of Cm III , Am III , and Ac III in nitrate solutions: an actinide L 3 -edge EXAFS study},
author = {Ferrier, Maryline G. and Stein, Benjamin W. and Bone, Sharon E. and Cary, Samantha K. and Ditter, Alexander S. and Kozimor, Stosh A. and Lezama Pacheco, Juan S. and Mocko, Veronika and Seidler, Gerald T.},
abstractNote = {Understanding actinide(III) (AnIII = CmIII, AmIII, AcIII) solution-phase speciation is critical for controlling many actinide processing schemes, ranging from medical applications to reprocessing of spent nuclear fuel. Unfortunately, in comparison to most elements in the periodic table, AnIII speciation is often poorly defined in complexing aqueous solutions and in organic media. This neglect – in large part – is a direct result of the radioactive properties of these elements, which make them difficult to handle and acquire. Here in this paper, we surmounted some of the handling challenges associated with these exotic 5f-elements and characterized CmIII, AmIII, and AcIII using AnIII L3-edge X-ray absorption spectroscopy (XAS) as a function of increasing nitric acid (HNO3) concentration. Our results revealed that actinide aquo ions, An(H2O)x3+ (x = 9.6 ± 0.7, 8.9 ± 0.8, and 10.0 ± 0.9 for CmIII, AmIII, and AcIII), were the dominant species in dilute HNO3 (0.05 M). In concentrated HNO3 (16 M), shell-by-shell fitting of the extended X-ray fine structure (EXAFS) data showed the nitrate complexation increased, such that the average stoichiometries of Cm(NO3)4.1±0.7(H2O)5.7±1.3(1.1±0.2)-, Am(NO3)3.4±0.7(H2O)5.4±0.5(0.4±0.1)-, and Ac(NO3)2.3±1.7(H2O)8.3±5.2(0.7±0.5)+ were observed. Data obtained at the intermediate HNO3 concentration (4 M) were modeled as a linear combination of the 0.05 and 16 M spectra. Here, for all three metals, the intermediate models showed larger contributions from the 0.05 M HNO3 spectra than from the 16 M HNO3 spectra. Additionally, these efforts enabled the Cm–NO3 and Ac–NO3 distances to be measured for the first time. Moreover, the AnIII L3-edge EXAFS results, contribute to the growing body of knowledge associated with CmIII, AmIII, and AcIII coordination chemistry, in particular toward advancing understanding of AnIII solution phase speciation.},
doi = {10.1039/C8SC02270D},
journal = {Chemical Science},
number = 35,
volume = 9,
place = {United Kingdom},
year = {Mon Jan 01 00:00:00 EST 2018},
month = {Mon Jan 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C8SC02270D

Citation Metrics:
Cited by: 37 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1 : The background subtracted and normalized room temperature solution-phase AnIII L3-edge XANES spectra of AnIII (An = CmIII, top; AmIII, middle; AcIII, bottom) cations dissolved in HNO3 (0.05 M, blue trace; 4 M, red trace; and 16 M, green trace). Spectra are displayed with a slight y-offset formore » clarity.« less

Save / Share:

Works referenced in this record:

Extraction of Lanthanides(III) and Am(III) by Mixtures of Malonamide and Dialkylphosphoric Acid
journal, April 2007

  • Gannaz, Benoît; Chiarizia, Renato; Antonio, Mark R.
  • Solvent Extraction and Ion Exchange, Vol. 25, Issue 3
  • DOI: 10.1080/07366290701285512

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Critical Stability Constants
book, January 1976


Actinide Lanthanide Separation Process—ALSEP
journal, January 2014

  • Gelis, Artem V.; Lumetta, Gregg J.
  • Industrial & Engineering Chemistry Research, Vol. 53, Issue 4
  • DOI: 10.1021/ie403569e

Ionic Liquid Based Separations of Trivalent Lanthanide and Actinide Ions.
journal, February 2014

  • Shkrob, Ilya A.; Marin, Timothy W.; Jensen, Mark P.
  • Industrial & Engineering Chemistry Research, Vol. 53, Issue 9
  • DOI: 10.1021/ie4036719

NEXAFS Spectroscopy
book, January 1992


Investigation of the Electronic Ground States for a Reduced Pyridine(diimine) Uranium Series: Evidence for a Ligand Tetraanion Stabilized by a Uranium Dimer
journal, April 2015

  • Anderson, Nickolas H.; Odoh, Samuel O.; Williams, Ursula J.
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja511867a

The Curium Aqua Ion
journal, April 2007

  • Skanthakumar, S.; Antonio, Mark R.; Wilson, Richard E.
  • Inorganic Chemistry, Vol. 46, Issue 9
  • DOI: 10.1021/ic061798b

Redox-Active vs Redox-Innocent: A Comparison of Uranium Complexes Containing Diamine Ligands
journal, May 2018


Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix
journal, August 2017


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Characterization of Aqueous Plutonium(IV) Nitrate Complexes by Extended X-ray Absorption Fine Structure Spectroscopy
journal, January 1996

  • Allen, P. G.; Veirs, D. K.; Conradson, S. D.
  • Inorganic Chemistry, Vol. 35, Issue 10
  • DOI: 10.1021/ic9511231

Characterizing Diamylamylphosphonate (DAAP) as an Americium Ligand for Nuclear Fuel-Cycle Applications
journal, January 2014

  • Mincher, Bruce J.; Schmitt, Nicholas C.; Tillotson, Richard D.
  • Solvent Extraction and Ion Exchange, Vol. 32, Issue 2
  • DOI: 10.1080/07366299.2013.850288

Polyoxovanadate–Alkoxide Clusters as a Redox Reservoir for Iron
journal, May 2017


CLXII.—Researches on residual affinity and co-ordination. Part II. Acetylacetones of selenium and tellurium
journal, January 1920

  • Morgan, Gilbert T.; Drew, Harry Dugald Keith
  • J. Chem. Soc., Trans., Vol. 117, Issue 0
  • DOI: 10.1039/CT9201701456

Thermodynamic Considerations of Covalency in Trivalent Actinide-(poly)aminopolycarboxylate Interactions
journal, January 2016

  • Drader, Jessica A.; Luckey, Morgan; Braley, Jenifer C.
  • Solvent Extraction and Ion Exchange, Vol. 34, Issue 2
  • DOI: 10.1080/07366299.2016.1140436

Extraction Selectivity of a Quaternary Alkylammonium Salt for Trivalent Actinides over Trivalent Lanthanides: Does Extractant Aggregation Play a Role?
journal, May 2017


The use of trioctylphosphine oxide for solvent extraction recovery and purification of transplutonium elements
journal, March 1980

  • Kosyakov, V. N.; Yerin, E. A.; Vitutnev, V. M.
  • Journal of Radioanalytical Chemistry, Vol. 56, Issue 1-2
  • DOI: 10.1007/BF02516940

EXAFS: Basic Principles and Data Analysis
book, January 1986


An overview of targeted alpha therapy
journal, December 2011


Comparative study on the hydration states of Cm(III) and Eu(III) in solution and in cation exchange resin
journal, June 1998


All-Electron Scalar Relativistic Basis Sets for the Actinides
journal, February 2011

  • Pantazis, Dimitrios A.; Neese, Frank
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 3
  • DOI: 10.1021/ct100736b

An Improved Method for the Production of Ac‐225/Bi‐213 from Th‐229 for Targeted Alpha Therapy
journal, April 2007

  • Zielinska, B.; Apostolidis, C.; Bruchertseifer, F.
  • Solvent Extraction and Ion Exchange, Vol. 25, Issue 3
  • DOI: 10.1080/07366290701285108

Liquid anion exchange of thiocyanate-nitrate actinide and lanthanide complexes
journal, October 1973


Extended X-ray Absorption Fine Structure Investigation of Adsorption and Separation Phenomena of Metal Ions in Organic Resin
journal, November 2007

  • Ikeda, Atsushi; Yaita, Tsuyoshi; Okamoto, Yoshihiro
  • Analytical Chemistry, Vol. 79, Issue 21
  • DOI: 10.1021/ac070700n

Features of the Thermodynamics of Trivalent Lanthanide/Actinide Distribution Reactions by Tri- n -octylphosphine Oxide and Bis(2-ethylhexyl) Phosphoric Acid
journal, October 2014

  • Grimes, Travis S.; Zalupski, Peter R.; Martin, Leigh R.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 44
  • DOI: 10.1021/jp507727v

The Structures and Optical Spectra of Hydrated Transplutonium Ions in the Solid State and in Solution
journal, January 2007

  • Lindqvist-Reis, Patric; Apostolidis, Christos; Rebizant, Jean
  • Angewandte Chemie International Edition, Vol. 46, Issue 6
  • DOI: 10.1002/anie.200603947

An Ion-exchange Study of Possible Hybridized 5f Bonding in the Actinides 1
journal, March 1954

  • Diamond, R. M.; Street, K.; Seaborg, G. T.
  • Journal of the American Chemical Society, Vol. 76, Issue 6
  • DOI: 10.1021/ja01635a001

Evaluating the electronic structure of formal Ln II ions in Ln II (C 5 H 4 SiMe 3 ) 3 1− using XANES spectroscopy and DFT calculations
journal, January 2017

  • Fieser, Megan E.; Ferrier, Maryline G.; Su, Jing
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/C7SC00825B

Paramagnetism of Aqueous Actinide Cations. Part I: Perchloric Acid Media
journal, February 2014

  • Wall, Thomas F.; Jan, Steve; Autillo, Matthieu
  • Inorganic Chemistry, Vol. 53, Issue 5
  • DOI: 10.1021/ic402371x

Isolation of Medicine-Applicable Actinium-225 from Thorium Targets Irradiated by Medium-Energy Protons
journal, June 2014


Synthesis and structure of complex nitrates of some Ln(III) and of Am(III) with 1,10-phenanthroline-2,9-dicarboxylic acid anions
journal, March 2015


Thermal decomposition of oxalates and nitrates of transplutonium elements by differential thermal analysis
journal, November 1990

  • Vasilyev, V. I.; Kalevich, E. S.; Radchenko, V. M.
  • Journal of Radioanalytical and Nuclear Chemistry Articles, Vol. 143, Issue 1
  • DOI: 10.1007/BF02117568

On the Origin of Covalent Bonding in Heavy Actinides
journal, July 2017

  • Kelley, Morgan P.; Su, Jing; Urban, Matthew
  • Journal of the American Chemical Society, Vol. 139, Issue 29
  • DOI: 10.1021/jacs.7b03251

Hydration of Lanthanoid(III) Ions in Aqueous Solution and Crystalline Hydrates Studied by EXAFS Spectroscopy and Crystallography: The Myth of the “Gadolinium Break”
journal, March 2008

  • Persson, Ingmar; D'Angelo, Paola; De Panfilis, Simone
  • Chemistry - A European Journal, Vol. 14, Issue 10
  • DOI: 10.1002/chem.200701281

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

2,6-Bis(5-(2,2-dimethylpropyl)-1 H -pyrazol-3-yl)pyridine as a Ligand for Efficient Actinide(III)/Lanthanide(III) Separation
journal, April 2012

  • Bremer, Antje; Ruff, Christian M.; Girnt, Denise
  • Inorganic Chemistry, Vol. 51, Issue 9
  • DOI: 10.1021/ic3000526

Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes
journal, February 2015


Structural insights into the multinuclear speciation of tetravalent cerium in the tri-n-butyl phosphate–n-dodecane solvent extraction system
journal, January 2017

  • Antonio, Mark R.; Ellis, Ross J.; Estes, Shanna L.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 32
  • DOI: 10.1039/C7CP03350H

All-Electron Scalar Relativistic Basis Sets for the Lanthanides
journal, August 2009

  • Pantazis, Dimitrios A.; Neese, Frank
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 9
  • DOI: 10.1021/ct900090f

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005

  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Effect of the damping function in dispersion corrected density functional theory
journal, March 2011

  • Grimme, Stefan; Ehrlich, Stephan; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 32, Issue 7
  • DOI: 10.1002/jcc.21759

An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 1. Process Optimization and Flowsheet Development
journal, August 2017

  • Lumetta, Gregg J.; Levitskaia, Tatiana G.; Wilden, Andreas
  • Solvent Extraction and Ion Exchange, Vol. 35, Issue 6
  • DOI: 10.1080/07366299.2017.1368901

Comparing the 2,2′-Biphenylenedithiophosphinate Binding of Americium with Neodymium and Europium
journal, September 2016

  • Cross, Justin N.; Macor, Joseph A.; Bertke, Jeffery A.
  • Angewandte Chemie International Edition, Vol. 55, Issue 41
  • DOI: 10.1002/anie.201606367

Examining the Effects of Ligand Variation on the Electronic Structure of Uranium Bis(imido) Species
journal, October 2016

  • Kiernicki, John J.; Ferrier, Maryline G.; Lezama Pacheco, Juan S.
  • Journal of the American Chemical Society, Vol. 138, Issue 42
  • DOI: 10.1021/jacs.6b06989

Coordination Chemistry of Trivalent Lanthanide and Actinide Ions in Dilute and Concentrated Chloride Solutions
journal, February 2000

  • Allen, P. G.; Bucher, J. J.; Shuh, D. K.
  • Inorganic Chemistry, Vol. 39, Issue 3
  • DOI: 10.1021/ic9905953

Explorations Of Talspeak Chemistry In Extraction Chromatography: Comparisons of TTHA with DTPA and HDEHP with HEH[EHP]
journal, March 2013

  • Braley, Jenifer C.; McAlister, Daniel R.; Philip Horwitz, E.
  • Solvent Extraction and Ion Exchange, Vol. 31, Issue 2
  • DOI: 10.1080/07366299.2012.735503

Complexation of Lanthanides with Nitrate at Variable Temperatures: Thermodynamics and Coordination Modes
journal, February 2009

  • Rao, Linfeng; Tian, Guoxin
  • Inorganic Chemistry, Vol. 48, Issue 3
  • DOI: 10.1021/ic801604f

Studies of local structure of Cm3+ in borosilicate glass using laser and x-ray spectroscopic methods and computational modeling
journal, January 2000

  • Liu, G. K.; Zhorin, V. V.; Antonio, M. R.
  • The Journal of Chemical Physics, Vol. 112, Issue 3
  • DOI: 10.1063/1.480687

Structural study of lanthanides(III) in aqueous nitrate and chloride solutions by EXAFS
journal, February 1999

  • Yaita, T.; Narita, H.; Suzuki, Sh.
  • Journal of Radioanalytical and Nuclear Chemistry, Vol. 239, Issue 2
  • DOI: 10.1007/BF02349514

Tributylphosphate Extraction Behavior of Bismuthate-Oxidized Americium
journal, August 2008

  • Mincher, Bruce J.; Martin, Leigh R.; Schmitt, Nicholas C.
  • Inorganic Chemistry, Vol. 47, Issue 15
  • DOI: 10.1021/ic800667h

A density functional theory study of complex species and reactions of Am(III)/Eu(III) with nitrate anions
journal, July 2013


Evaluation of f-element borate chemistry
journal, September 2016


Production of actinium-225 for alpha particle mediated radioimmunotherapy
journal, May 2005


Production of Ac-225 from Th-229 for Targeted α Therapy
journal, October 2005

  • Apostolidis, C.; Molinet, R.; Rasmussen, G.
  • Analytical Chemistry, Vol. 77, Issue 19
  • DOI: 10.1021/ac0580114

Revised Ionic Radii of Lanthanoid(III) Ions in Aqueous Solution
journal, May 2011

  • D’Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina
  • Inorganic Chemistry, Vol. 50, Issue 10
  • DOI: 10.1021/ic200260r

Sulfur K-edge X-ray Absorption Spectroscopy and Time-Dependent Density Functional Theory of Dithiophosphinate Extractants: Minor Actinide Selectivity and Electronic Structure Correlations
journal, August 2012

  • Daly, Scott R.; Keith, Jason M.; Batista, Enrique R.
  • Journal of the American Chemical Society, Vol. 134, Issue 35
  • DOI: 10.1021/ja303999q

Future nuclear fuel cycles: Prospect and challenges for actinide recycling
journal, March 2010


Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure
journal, September 1998


Hydration Properties and Ionic Radii of Actinide(III) Ions in Aqueous Solution
journal, August 2013

  • D’Angelo, Paola; Martelli, Fausto; Spezia, Riccardo
  • Inorganic Chemistry, Vol. 52, Issue 18
  • DOI: 10.1021/ic400678u

Synthesis and Characterization of the Actinium Aquo Ion
journal, February 2017

  • Ferrier, Maryline G.; Stein, Benjamin W.; Batista, Enrique R.
  • ACS Central Science, Vol. 3, Issue 3
  • DOI: 10.1021/acscentsci.6b00356

6-(3,5-Dimethyl-1 H -pyrazol-1-yl)-2,2′-bipyridine as Ligand for Actinide(III)/Lanthanide(III) Separation
journal, October 2010

  • Girnt, Denise; Roesky, Peter W.; Geist, Andreas
  • Inorganic Chemistry, Vol. 49, Issue 20
  • DOI: 10.1021/ic101309j

Extraction Behavior of TRU Elements in the Nuclear Fuel Reprocessing
journal, November 2002

  • Hotoku, Shinobu; Asakura, Toshihide; Mineo, Hideaki
  • Journal of Nuclear Science and Technology, Vol. 39, Issue sup3
  • DOI: 10.1080/00223131.2002.10875471

Tri-n-butyl phosphate as an extracting agent for inorganic nitrates—VII
journal, December 1959

  • Best, G. F.; Hesford, E.; McKay, H. A. C.
  • Journal of Inorganic and Nuclear Chemistry, Vol. 12, Issue 1-2
  • DOI: 10.1016/0022-1902(59)80103-2

A direct nitrogen-15 NMR study of cerium(III)-nitrate complexes in aqueous solvent mixtures
journal, July 1992

  • Fratiello, A.; Kubo-Anderson, V.; Azimi, S.
  • Journal of Solution Chemistry, Vol. 21, Issue 7
  • DOI: 10.1007/BF00650759

Spontaneous Partitioning of Californium from Curium: Curious Cases from the Crystallization of Curium Coordination Complexes
journal, November 2015


Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes
journal, September 2012

  • Law, Ga-Lai; Andolina, Christopher M.; Xu, Jide
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja306354n

Chirality and Polarity in the f-Block Borates M 4 [B 16 O 26 (OH) 4 (H 2 O) 3 Cl 4 ] (M=Sm, Eu, Gd, Pu, Am, Cm, and Cf)
journal, July 2014

  • Polinski, Matthew J.; Pace, Kristen A.; Stritzinger, Jared. T.
  • Chemistry - A European Journal, Vol. 20, Issue 32
  • DOI: 10.1002/chem.201403820

The structures of CyMe 4 -BTBP complexes of americium( iii ) and europium( iii ) in solvents used in solvent extraction, explaining their separation properties
journal, January 2015

  • Ekberg, Christian; Löfström-Engdahl, Elin; Aneheim, Emma
  • Dalton Transactions, Vol. 44, Issue 42
  • DOI: 10.1039/C5DT02859K

Theoretical approaches to x-ray absorption fine structure
journal, July 2000


Quantum Mechanical Calculation of Molecular Radii. I. Hydrides of Elements of Periodic Groups IV through VII
journal, May 1972

  • Kammeyer, Carl W.; Whitman, Donald R.
  • The Journal of Chemical Physics, Vol. 56, Issue 9
  • DOI: 10.1063/1.1677883

Nitric Acid Extraction into TODGA
journal, January 2012


Targeted alpha therapy for cancer
journal, July 2004


Comparison of Covalency in the Complexes of Trivalent Actinide and Lanthanide Cations
journal, August 2002

  • Jensen, Mark P.; Bond, Andrew H.
  • Journal of the American Chemical Society, Vol. 124, Issue 33
  • DOI: 10.1021/ja0178620

Aqueous Complexes for Efficient Size-based Separation of Americium from Curium
journal, May 2014

  • Jensen, Mark P.; Chiarizia, Renato; Shkrob, Ilya A.
  • Inorganic Chemistry, Vol. 53, Issue 12
  • DOI: 10.1021/ic500244p

Works referencing / citing this record:

Coordination chemistry of lanthanides in a AOT–CMPO solvent extraction system: UV-Vis and XAFS studies
journal, January 2018

  • Moon, Jisue; Nilsson, Mikael
  • Dalton Transactions, Vol. 47, Issue 43
  • DOI: 10.1039/c8dt02957a

Selective Extraction of Americium from Curium and the Lanthanides by the Lipophilic Ligand CyMe 4 BTPhen Dissolved in Aliquat-336 Nitrate Ionic Liquid
journal, January 2020


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.