Unusual electronic and vibrational properties in the colossal thermopower material FeSb2
Abstract The iron antimonide FeSb 2 possesses an extraordinarily high thermoelectric power factor at low temperature, making it a leading candidate for cryogenic thermoelectric cooling devices. However, the origin of this unusual behavior is controversial, having been variously attributed to electronic correlations as well as the phonon-drag effect. The optical properties of a material provide information on both the electronic and vibrational properties. The optical conductivity reveals an anisotropic response at room temperature; the low-frequency optical conductivity decreases rapidly with temperature, signalling a metal-insulator transition. One-dimensional semiconducting behavior is observed along the b axis at low temperature, in agreement with first-principle calculations. The infrared-active lattice vibrations are also symmetric and extremely narrow, indicating long phonon relaxation times and a lack of electron-phonon coupling. Surprisingly, there are more lattice modes along the a axis than are predicted from group theory; several of these modes undergo significant changes below about 100 K, hinting at a weak structural distortion or phase transition. While the extremely narrow phonon line shapes favor the phonon-drag effect, the one-dimensional behavior of this system at low temperature may also contribute to the extraordinarily high thermopower observed in this material.
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- NONE; SC0012704
- OSTI ID:
- 1462129
- Journal Information:
- Scientific Reports, Journal Name: Scientific Reports Journal Issue: 1 Vol. 8; ISSN 2045-2322
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United Kingdom
- Language:
- English
Similar Records
Colossal phonon drag enhanced thermopower in lightly doped diamond
Optimal carrier concentration for FeSb2 colossal thermopower