skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on May 2, 2019

Title: Communication: xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS

Here, double hybrid (DH) density functionals are amongst the most accurate density functional approximations developed so far, largely due to the incorporation of correlation effects from unoccupied orbitals via second order perturbation theory (PT2). The xDH family of DH functionals calculate energy directly from orbitals optimized by a lower level approach like B3LYP, without self-consistent optimization. XYG3 and XYGJ-OS are two widely used xDH functionals that are known to be quite accurate at equilibrium geometries. Here, we show that the XYG3 and XYGJ-OS functionals can be ill behaved for stretched bonds well beyond the Coulson-Fischer point, predicting unphysical dipole moments and humps in potential energy curves for some simple systems like the hydrogen fluoride molecule. Numerical experiments and analysis show that these failures are not due to PT2. Instead, a large mismatch at stretched bond-lengths between the reference B3LYP orbitals and the optimized orbitals associated with the non-PT2 part of XYG3 leads to an unphysically large non-Hellman-Feynman contribution to first order properties like forces and electron densities.
Authors:
ORCiD logo [1] ; ORCiD logo [2]
  1. Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 148; Journal Issue: 17; Related Information: © 2018 Author(s).; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1461993
Alternate Identifier(s):
OSTI ID: 1435669

Hait, Diptarka, and Head-Gordon, Martin. Communication: xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS. United States: N. p., Web. doi:10.1063/1.5031027.
Hait, Diptarka, & Head-Gordon, Martin. Communication: xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS. United States. doi:10.1063/1.5031027.
Hait, Diptarka, and Head-Gordon, Martin. 2018. "Communication: xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS". United States. doi:10.1063/1.5031027.
@article{osti_1461993,
title = {Communication: xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS},
author = {Hait, Diptarka and Head-Gordon, Martin},
abstractNote = {Here, double hybrid (DH) density functionals are amongst the most accurate density functional approximations developed so far, largely due to the incorporation of correlation effects from unoccupied orbitals via second order perturbation theory (PT2). The xDH family of DH functionals calculate energy directly from orbitals optimized by a lower level approach like B3LYP, without self-consistent optimization. XYG3 and XYGJ-OS are two widely used xDH functionals that are known to be quite accurate at equilibrium geometries. Here, we show that the XYG3 and XYGJ-OS functionals can be ill behaved for stretched bonds well beyond the Coulson-Fischer point, predicting unphysical dipole moments and humps in potential energy curves for some simple systems like the hydrogen fluoride molecule. Numerical experiments and analysis show that these failures are not due to PT2. Instead, a large mismatch at stretched bond-lengths between the reference B3LYP orbitals and the optimized orbitals associated with the non-PT2 part of XYG3 leads to an unphysically large non-Hellman-Feynman contribution to first order properties like forces and electron densities.},
doi = {10.1063/1.5031027},
journal = {Journal of Chemical Physics},
number = 17,
volume = 148,
place = {United States},
year = {2018},
month = {5}
}

Works referenced in this record:

Density?functional thermochemistry. III. The role of exact exchange
journal, April 1993
  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913