DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy

Abstract

Free-standing nanoribbons of InAs quantum membranes (QMs) transferred onto a (Si/Mo) multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS) and by standing-wave HXPS (SW-HXPS). Information on the chemical composition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM) and its interfaces were quantitatively derived with ångström precision. We determined that (i) the exposure to air induced the formation of an InAsO4 layer on top of the stoichiometric InAs(QM); (ii) the top interface between the air-side InAsO4 and the InAs(QM) is not sharp, indicating that interdiffusion occurs between these two layers; (iii) the bottom interface between the InAs(QM) and the native oxide SiO2 on top of the (Si/Mo) substrate is abrupt. In addition, the valence band offset (VBO) between the InAs(QM) and the SiO2/(Si/Mo) substrate was determined by HXPS. The value of VBO = 0.2 ± 0.04 eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO2 heterojunction. We have demonstratedmore » that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [3];  [1];  [1];  [1]; ORCiD logo [4];  [5];  [6];  [7];  [8]; ORCiD logo [9];  [10];  [11];  [1]
  1. Univ. of California, Davis, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  2. Univ. of California, Davis, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division. Advanced Light Source; Forschungszentrum Julich (Germany). Peter Grünberg Inst. PGI-6
  3. Univ. of California, Davis, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Forschungszentrum Julich (Germany). Peter Grünberg Inst. PGI-6
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for Computational Sciences and Engineering
  6. Univ. of California, Berkeley, CA (United States). Dept. of Mathematics
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source. Chemical Sciences Division
  8. Synchrotron-SOLEIL, Saint-Aubin (France)
  9. Synchrotron-SOLEIL, Saint-Aubin (France); National Centre for Scientific Research (CNRS) and Sorbonne Univ., Paris (France). Lab. of Physical Chemistry - Matter and Radiation (LCPMR)
  10. Northeastern Univ., Boston, MA (United States). Dept. of Electrical and Computer Engineering
  11. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Electrical Engineering and Computer Sciences
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); LBNL Laboratory Directed Research and Development (LDRD) Program; National Research Agency (ANR) (France)
OSTI Identifier:
1461989
Alternate Identifier(s):
OSTI ID: 1432107
Grant/Contract Number:  
AC02-05CH11231; SC0014697
Resource Type:
Accepted Manuscript
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 5; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; chemical analysis; semiconductors; X-ray diffraction; X-ray photoelectron spectroscopy; wave mechanics; nanomaterials; heterojunctions; bipolar transistors

Citation Formats

Conti, G., Nemsak, S., Kuo, C. -T., Gehlmann, M., Conlon, C., Keqi, A., Rattanachata, A., Karslioglu, O., Mueller, J., Sethian, J., Bluhm, H., Rault, J. E., Rueff, J. P., Fang, H., Javey, A., and Fadley, C. S. Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy. United States: N. p., 2018. Web. doi:10.1063/1.5022379.
Conti, G., Nemsak, S., Kuo, C. -T., Gehlmann, M., Conlon, C., Keqi, A., Rattanachata, A., Karslioglu, O., Mueller, J., Sethian, J., Bluhm, H., Rault, J. E., Rueff, J. P., Fang, H., Javey, A., & Fadley, C. S. Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy. United States. https://doi.org/10.1063/1.5022379
Conti, G., Nemsak, S., Kuo, C. -T., Gehlmann, M., Conlon, C., Keqi, A., Rattanachata, A., Karslioglu, O., Mueller, J., Sethian, J., Bluhm, H., Rault, J. E., Rueff, J. P., Fang, H., Javey, A., and Fadley, C. S. Fri . "Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy". United States. https://doi.org/10.1063/1.5022379. https://www.osti.gov/servlets/purl/1461989.
@article{osti_1461989,
title = {Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy},
author = {Conti, G. and Nemsak, S. and Kuo, C. -T. and Gehlmann, M. and Conlon, C. and Keqi, A. and Rattanachata, A. and Karslioglu, O. and Mueller, J. and Sethian, J. and Bluhm, H. and Rault, J. E. and Rueff, J. P. and Fang, H. and Javey, A. and Fadley, C. S.},
abstractNote = {Free-standing nanoribbons of InAs quantum membranes (QMs) transferred onto a (Si/Mo) multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS) and by standing-wave HXPS (SW-HXPS). Information on the chemical composition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM) and its interfaces were quantitatively derived with ångström precision. We determined that (i) the exposure to air induced the formation of an InAsO4 layer on top of the stoichiometric InAs(QM); (ii) the top interface between the air-side InAsO4 and the InAs(QM) is not sharp, indicating that interdiffusion occurs between these two layers; (iii) the bottom interface between the InAs(QM) and the native oxide SiO2 on top of the (Si/Mo) substrate is abrupt. In addition, the valence band offset (VBO) between the InAs(QM) and the SiO2/(Si/Mo) substrate was determined by HXPS. The value of VBO = 0.2 ± 0.04 eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO2 heterojunction. We have demonstrated that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.},
doi = {10.1063/1.5022379},
journal = {APL Materials},
number = 5,
volume = 6,
place = {United States},
year = {Fri Apr 06 00:00:00 EDT 2018},
month = {Fri Apr 06 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Role of Molecular Surface Passivation in Electrical Transport Properties of InAs Nanowires
journal, January 2008

  • Hang, Qingling; Wang, Fudong; Carpenter, Patrick D.
  • Nano Letters, Vol. 8, Issue 1
  • DOI: 10.1021/nl071888t

Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes
journal, November 2011

  • Takei, Kuniharu; Fang, Hui; Kumar, S. Bala
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl2030322

Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers
journal, April 1994


III–V Complementary Metal–Oxide–Semiconductor Electronics on Silicon Substrates
journal, June 2012

  • Nah, Junghyo; Fang, Hui; Wang, Chuan
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl301254z

TEM Sample Preparation and FIB-Induced Damage
journal, May 2007

  • Mayer, Joachim; Giannuzzi, Lucille A.; Kamino, Takeo
  • MRS Bulletin, Vol. 32, Issue 5
  • DOI: 10.1557/mrs2007.63

Characterization and analysis of InA s / p –Si heterojunction nanowire-based solar cell
journal, September 2014

  • Mallorquí, Anna Dalmau; Alarcón-Lladó, Esther; Russo-Averchi, Eleonora
  • Journal of Physics D: Applied Physics, Vol. 47, Issue 39
  • DOI: 10.1088/0022-3727/47/39/394017

A III–V nanowire channel on silicon for high-performance vertical transistors
journal, August 2012

  • Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi
  • Nature, Vol. 488, Issue 7410
  • DOI: 10.1038/nature11293

Heterojunction band offset engineering
journal, January 1996


Parallel Array InAs Nanowire Transistors for Mechanically Bendable, Ultrahigh Frequency Electronics
journal, September 2010

  • Takahashi, Toshitake; Takei, Kuniharu; Adabi, Ehsan
  • ACS Nano, Vol. 4, Issue 10
  • DOI: 10.1021/nn1018329

Vertical III–V Nanowire Device Integration on Si(100)
journal, March 2014

  • Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E.
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl404743j

High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold
journal, June 1972


Interpretation of the Shirley background in x-ray photoelectron spectroscopy analysis
journal, July 2001

  • Castle, J. E.; Salvi, A. M.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 19, Issue 4
  • DOI: 10.1116/1.1378074

Advancement in Nanoscale CMOS Device Design En Route to Ultra-Low-Power Applications
journal, May 2011

  • Dhar, Subhra; Pattanaik, Manisha; Rajaram, Poolla
  • VLSI Design, Vol. 2011
  • DOI: 10.1155/2011/178516

Photocurrents in a Single InAs Nanowire/Silicon Heterojunction
journal, September 2015


Reduction of native oxides on InAs by atomic layer deposited Al2O3 and HfO2
journal, September 2010

  • Timm, R.; Fian, A.; Hjort, M.
  • Applied Physics Letters, Vol. 97, Issue 13
  • DOI: 10.1063/1.3495776

Determination of band alignment in the single-layer MoS2/WSe2 heterojunction
journal, July 2015

  • Chiu, Ming-Hui; Zhang, Chendong; Shiu, Hung-Wei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8666

Direct measurement of surface states density and energy distribution in individual InAs nanowires
journal, June 2012

  • Halpern, E.; Elias, G.; Kretinin, A. V.
  • Applied Physics Letters, Vol. 100, Issue 26
  • DOI: 10.1063/1.4731211

Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range
journal, February 2011

  • Tanuma, S.; Powell, C. J.; Penn, D. R.
  • Surface and Interface Analysis, Vol. 43, Issue 3
  • DOI: 10.1002/sia.3522

The effects of core-level broadening in determining band alignment at the epitaxial SrTiO 3 (001)/ p -Ge(001) heterojunction
journal, February 2017

  • Chambers, Scott A.; Du, Yingge; Comes, Ryan B.
  • Applied Physics Letters, Vol. 110, Issue 8
  • DOI: 10.1063/1.4977422

Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K
journal, June 1968


Direct Heteroepitaxy of Vertical InAs Nanowires on Si Substrates for Broad Band Photovoltaics and Photodetection
journal, August 2009

  • Wei, Wei; Bao, Xin-Yu; Soci, Cesare
  • Nano Letters, Vol. 9, Issue 8
  • DOI: 10.1021/nl901270n

Quantitative XPS: non-destructive analysis of surface nano-structures
journal, July 1996


Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials
journal, July 2009


Si–InAs heterojunction Esaki tunnel diodes with high current densities
journal, October 2010

  • Björk, M. T.; Schmid, H.; Bessire, C. D.
  • Applied Physics Letters, Vol. 97, Issue 16
  • DOI: 10.1063/1.3499365

Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells
journal, January 2013

  • Kempa, Thomas J.; Day, Robert W.; Kim, Sun-Kyung
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee24182c

Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission
journal, December 2008

  • Kronast, F.; Ovsyannikov, R.; Kaiser, A.
  • Applied Physics Letters, Vol. 93, Issue 24
  • DOI: 10.1063/1.3046782

Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors
journal, November 2010

  • Ko, Hyunhyub; Takei, Kuniharu; Kapadia, Rehan
  • Nature, Vol. 468, Issue 7321
  • DOI: 10.1038/nature09541

A model for Fermi-level pinning in semiconductors: radiation defects, interface boundaries
journal, May 2004


Simulation of electron spectra for surface analysis (SESSA): a novel software tool for quantitative Auger-electron spectroscopy and X-ray photoelectron spectroscopy
journal, January 2005

  • Smekal, Werner; Werner, Wolfgang S. M.; Powell, Cedric J.
  • Surface and Interface Analysis, Vol. 37, Issue 11
  • DOI: 10.1002/sia.2097

Nanoscale Etching and Reoxidation of InAs
journal, September 2014


Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors
text, January 2011


Photocurrents in a Single InAs Nanowire/ Silicon Heterojunction
text, January 2015


Works referencing / citing this record:

Perspective: New process technologies required for future devices and scaling
journal, May 2018

  • Clark, R.; Tapily, K.; Yu, K. -H.
  • APL Materials, Vol. 6, Issue 5
  • DOI: 10.1063/1.5026805

HAXPES for Materials Science at the GALAXIES Beamline
journal, July 2018


HAXPES for materials science at the GALAXIES beamline
text, January 2018