skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 16, 2019

Title: Continuous electrochemical heat engines

Direct electrochemical heat engines enable the use of novel redox-active fluids and optimization of both power and efficiency for broad-spectrum heat harvesting.
Authors:
 [1] ;  [2] ; ORCiD logo [1] ; ORCiD logo [3]
  1. Department of Materials Science and Engineering, Stanford University, Stanford, USA, Stanford Institute for Materials and Energy Sciences
  2. Department of Chemical Engineering, Stanford University, Stanford, USA
  3. Stanford Precourt Institute for Energy, Stanford, USA, Department of Mechanical Engineering, Stanford University
Publication Date:
Grant/Contract Number:
AC02-76SF00515
Type:
Publisher's Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Name: Energy & Environmental Science Journal Volume: 11 Journal Issue: 10; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry (RSC)
Sponsoring Org:
USDOE
Country of Publication:
United Kingdom
Language:
English
OSTI Identifier:
1461903

Poletayev, Andrey D., McKay, Ian S., Chueh, William C., and Majumdar, Arun. Continuous electrochemical heat engines. United Kingdom: N. p., Web. doi:10.1039/C8EE01137K.
Poletayev, Andrey D., McKay, Ian S., Chueh, William C., & Majumdar, Arun. Continuous electrochemical heat engines. United Kingdom. doi:10.1039/C8EE01137K.
Poletayev, Andrey D., McKay, Ian S., Chueh, William C., and Majumdar, Arun. 2018. "Continuous electrochemical heat engines". United Kingdom. doi:10.1039/C8EE01137K.
@article{osti_1461903,
title = {Continuous electrochemical heat engines},
author = {Poletayev, Andrey D. and McKay, Ian S. and Chueh, William C. and Majumdar, Arun},
abstractNote = {Direct electrochemical heat engines enable the use of novel redox-active fluids and optimization of both power and efficiency for broad-spectrum heat harvesting.},
doi = {10.1039/C8EE01137K},
journal = {Energy & Environmental Science},
number = 10,
volume = 11,
place = {United Kingdom},
year = {2018},
month = {10}
}

Works referenced in this record:

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010
  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Complex thermoelectric materials
journal, February 2008
  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

An electrochemical system for efficiently harvesting low-grade heat energy
journal, May 2014
  • Lee, Seok Woo; Yang, Yuan; Lee, Hyun-Wook
  • Nature Communications, Vol. 5, Article No. 3942
  • DOI: 10.1038/ncomms4942

New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007
  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008

A Review of Power Generation in Aqueous Thermogalvanic Cells
journal, January 1995
  • Quickenden, T. I.; Mua, Y.
  • Journal of The Electrochemical Society, Vol. 142, Issue 11, p. 3985-3994
  • DOI: 10.1149/1.2048446

Semi-Solid Lithium Rechargeable Flow Battery
journal, May 2011
  • Duduta, Mihai; Ho, Bryan; Wood, Vanessa C.
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 511-516
  • DOI: 10.1002/aenm.201100152

Searching for a Better Thermal Battery
journal, March 2012