DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Emergence of Interfacial Polarons from Electron–Phonon Coupling in Graphene/h-BN van der Waals Heterostructures

Abstract

van der Waals heterostructures, vertical stacks of layered materials, offer new opportunities for novel quantum phenomena which are absent in their constituent components. Here we report the emergence of polaron quasiparticles at the interface of graphene/hexagonal boron nitride (h-BN) heterostructures. Using nanospot angle-resolved photoemission spectroscopy, we observe zone-corner replicas of h-BN valence band maxima, with energy spacing coincident with the highest phonon energy of the heterostructure, an indication of Fröhlich polaron formation due to forward-scattering electron–phonon coupling. Parabolic fitting of the h-BN bands yields an effective mass enhancement of ~2.3, suggesting an intermediate coupling strength. Our theoretical simulations based on Migdal–Eliashberg theory corroborate the experimental results, allowing the extraction of microscopic physical parameters. Moreover, renormalization of graphene π-band is observed due to the hybridization with the h-BN band. Our work generalizes the polaron study from transition metal oxides to van der Waals heterostructures with higher material flexibility, highlighting interlayer coupling as an extra degree of freedom to explore emergent phenomena.

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [4];  [2];  [2];  [5];  [6];  [2];  [1]
  1. Synchrotron SOLEIL and Univ. Paris-Saclay, Gif sur Yvette Cedex (France)
  2. Chinese Academy of Sciences (CAS), Beijing (China)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Univ. of Bath, Bath (United Kingdom)
  5. Chinese Academy of Sciences (CAS), Beijing (China); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1461624
Alternate Identifier(s):
OSTI ID: 1484748
Grant/Contract Number:  
2013CB934500; AC02-76SF00515; 61325021; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 2; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; electronic structure; electron−phonon coupling; Migdal-Eliashberg theory; NanoARPES; polaron; van der Waals heterostructure

Citation Formats

Chen, Chaoyu, Avila, Jose, Wang, Shuopei, Wang, Yao, Mucha-Kruczy?ski, Marcin, Shen, Cheng, Yang, Rong, Nosarzewski, Benjamin, Devereaux, Thomas P., Zhang, Guangyu, and Asensio, Maria Carmen. Emergence of Interfacial Polarons from Electron–Phonon Coupling in Graphene/h-BN van der Waals Heterostructures. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.7b04604.
Chen, Chaoyu, Avila, Jose, Wang, Shuopei, Wang, Yao, Mucha-Kruczy?ski, Marcin, Shen, Cheng, Yang, Rong, Nosarzewski, Benjamin, Devereaux, Thomas P., Zhang, Guangyu, & Asensio, Maria Carmen. Emergence of Interfacial Polarons from Electron–Phonon Coupling in Graphene/h-BN van der Waals Heterostructures. United States. https://doi.org/10.1021/acs.nanolett.7b04604
Chen, Chaoyu, Avila, Jose, Wang, Shuopei, Wang, Yao, Mucha-Kruczy?ski, Marcin, Shen, Cheng, Yang, Rong, Nosarzewski, Benjamin, Devereaux, Thomas P., Zhang, Guangyu, and Asensio, Maria Carmen. Fri . "Emergence of Interfacial Polarons from Electron–Phonon Coupling in Graphene/h-BN van der Waals Heterostructures". United States. https://doi.org/10.1021/acs.nanolett.7b04604. https://www.osti.gov/servlets/purl/1461624.
@article{osti_1461624,
title = {Emergence of Interfacial Polarons from Electron–Phonon Coupling in Graphene/h-BN van der Waals Heterostructures},
author = {Chen, Chaoyu and Avila, Jose and Wang, Shuopei and Wang, Yao and Mucha-Kruczy?ski, Marcin and Shen, Cheng and Yang, Rong and Nosarzewski, Benjamin and Devereaux, Thomas P. and Zhang, Guangyu and Asensio, Maria Carmen},
abstractNote = {van der Waals heterostructures, vertical stacks of layered materials, offer new opportunities for novel quantum phenomena which are absent in their constituent components. Here we report the emergence of polaron quasiparticles at the interface of graphene/hexagonal boron nitride (h-BN) heterostructures. Using nanospot angle-resolved photoemission spectroscopy, we observe zone-corner replicas of h-BN valence band maxima, with energy spacing coincident with the highest phonon energy of the heterostructure, an indication of Fröhlich polaron formation due to forward-scattering electron–phonon coupling. Parabolic fitting of the h-BN bands yields an effective mass enhancement of ~2.3, suggesting an intermediate coupling strength. Our theoretical simulations based on Migdal–Eliashberg theory corroborate the experimental results, allowing the extraction of microscopic physical parameters. Moreover, renormalization of graphene π-band is observed due to the hybridization with the h-BN band. Our work generalizes the polaron study from transition metal oxides to van der Waals heterostructures with higher material flexibility, highlighting interlayer coupling as an extra degree of freedom to explore emergent phenomena.},
doi = {10.1021/acs.nanolett.7b04604},
journal = {Nano Letters},
number = 2,
volume = 18,
place = {United States},
year = {Fri Jan 05 00:00:00 EST 2018},
month = {Fri Jan 05 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 44 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: General experimental geometry and sample characterisation a, Schematic focus mechanism of NanoARPES. b, Schematic of G/h-BN lattice structure. c, Overall photoemission core level spectrum taken with bean energy 350 eV and beam spot larger than 50 µm. The inset shows the detailed NanoARPES spectrum close to Fermi levelmore » taken with beam energy 100 eV. d, NanoARPES image shows the distribution of photoemission intensity integrated from the energy-angle window (dashed box) shown in c. e, Optical image of the measured sample. The heterostructure is grounded by Au contact. Pristine h-BN border is highlighted by dashed white lines, in panels d and e .« less

Save / Share:

Works referenced in this record:

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Cloning of Dirac fermions in graphene superlattices
journal, May 2013

  • Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.
  • Nature, Vol. 497, Issue 7451
  • DOI: 10.1038/nature12187

Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure
journal, May 2013


Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices
journal, May 2013


Commensurate–incommensurate transition in graphene on hexagonal boron nitride
journal, April 2014

  • Woods, C. R.; Britnell, L.; Eckmann, A.
  • Nature Physics, Vol. 10, Issue 6
  • DOI: 10.1038/nphys2954

Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride
journal, August 2016

  • Wang, Eryin; Lu, Xiaobo; Ding, Shijie
  • Nature Physics, Vol. 12, Issue 12
  • DOI: 10.1038/nphys3856

Electronic structure of transferred graphene/h-BN van der Waals heterostructures with nonzero stacking angles by nano-ARPES
journal, September 2016


Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy
journal, November 2016

  • Jobst, Johannes; van der Torren, Alexander J. H.; Krasovskii, Eugene E.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13621

Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride
journal, February 2011

  • Xue, Jiamin; Sanchez-Yamagishi, Javier; Bulmash, Danny
  • Nature Materials, Vol. 10, Issue 4
  • DOI: 10.1038/nmat2968

First NanoARPES User Facility Available at SOLEIL: An Innovative and Powerful Tool for Studying Advanced Materials
journal, March 2014


Chemical and electronic structure imaging of graphene on Cu: a NanoARPES study
journal, March 2017

  • Chen, Chaoyu; Avila, José; Asensio, Maria C.
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 18
  • DOI: 10.1088/1361-648X/aa6487

Electronic structure of polycrystalline CVD-graphene revealed by Nano-ARPES
journal, June 2017


Direct Observation of Interlayer Hybridization and Dirac Relativistic Carriers in Graphene/MoS 2 van der Waals Heterostructures
journal, January 2015

  • Coy Diaz, Horacio; Avila, José; Chen, Chaoyu
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504167y

Phonons and electron-phonon coupling in graphene- h -BN heterostructures : Phonons and electron-phonon coupling in graphene-
journal, September 2014

  • Slotman, Guus J.; de Wijs, Gilles A.; Fasolino, Annalisa
  • Annalen der Physik, Vol. 526, Issue 9-10
  • DOI: 10.1002/andp.201400155

Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy
journal, November 2015

  • Jung, Suyong; Park, Minkyu; Park, Jaesung
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep16642

Aspects of electron–phonon interactions with strong forward scattering in FeSe Thin Films on SrTiO 3 substrates
journal, April 2016


Macroscopic self-reorientation of interacting two-dimensional crystals
journal, March 2016

  • Woods, C. R.; Withers, F.; Zhu, M. J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10800

Pressure-induced commensurate stacking of graphene on boron nitride
journal, October 2016

  • Yankowitz, Matthew; Watanabe, K.; Taniguchi, T.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13168

Direct observation of the band structure in bulk hexagonal boron nitride
journal, February 2017


Epitaxial growth of single-domain graphene on hexagonal boron nitride
journal, July 2013

  • Yang, Wei; Chen, Guorui; Shi, Zhiwen
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3695

Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis
journal, August 2010


Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3
journal, November 2014

  • Lee, J. J.; Schmitt, F. T.; Moore, R. G.
  • Nature, Vol. 515, Issue 7526
  • DOI: 10.1038/nature13894

Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface
journal, October 2015

  • Chen, Chaoyu; Avila, José; Frantzeskakis, Emmanouil
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9585

Tailoring the nature and strength of electron–phonon interactions in the SrTiO3(001) 2D electron liquid
journal, April 2016

  • Wang, Z.; McKeown Walker, S.; Tamai, A.
  • Nature Materials, Vol. 15, Issue 8
  • DOI: 10.1038/nmat4623

Tunable Polaronic Conduction in Anatase TiO 2
journal, May 2013


Origin of the crossover from polarons to Fermi liquids in transition metal oxides
journal, June 2017

  • Verdi, Carla; Caruso, Fabio; Giustino, Feliciano
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15769

Diagrammatic quantum Monte Carlo study of the Fröhlich polaron
journal, September 2000


Scaling relations between the two- and three-dimensional polarons for static and dynamical properties
journal, September 1987


Enhanced Light–Matter Interaction in Graphene/h-BN van der Waals Heterostructures
journal, March 2017

  • Aggoune, Wahib; Cocchi, Caterina; Nabok, Dmitrii
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 7
  • DOI: 10.1021/acs.jpclett.7b00357

Light-emitting diodes by band-structure engineering in van der Waals heterostructures
journal, February 2015

  • Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4205

Evidence for an Excitonic Insulator Phase in 1 T TiSe 2
journal, October 2007


Experimental observation of two massless Dirac-fermion gases in graphene-topological insulator heterostructure
journal, May 2016


Works referencing / citing this record:

Electron-polaron—electron-polaron bound states in mass-gap graphene-like planar quantum electrodynamics: s-wave bipolarons
journal, October 2018


Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields
journal, September 2019


Intervalley polaron in atomically thin transition metal dichalcogenides
journal, July 2019


Nanospot angle-resolved photoemission study of Bernal-stacked bilayer graphene on hexagonal boron nitride: Band structure and local variation of lattice alignment
journal, April 2019

  • Joucken, Frédéric; Quezada-López, Eberth A.; Avila, Jose
  • Physical Review B, Vol. 99, Issue 16
  • DOI: 10.1103/physrevb.99.161406

Large local lattice expansion in graphene adlayers grown on copper
journal, April 2018


Ab initio theory of polarons: Formalism and applications
journal, June 2019


Ab initio theory of polarons: formalism and applications
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.