skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology

Abstract

Polar cloud radiative forcing plays a crucial role in the determination of the surface and atmospheric energy balance through processes which are not yet fully understood. While there is a broad and fairly complete database of cloud measurements from several Arctic sites and field campaigns through the past two decades, the recent one-year long U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) field campaign at McMurdo Station has provided a hitherto unmatched multiple-instrument set of ground-based Antarctic cloud measurements. These observations are processed and used to derive the main cloud and liquid containing layer properties: occurrence fraction, cloud persistence and boundaries, and configuration relative to temperature and moisture inversions. The results are compared to previous Arctic observations. It is concluded that clouds and liquid-bearing layers over McMurdo Station are essentially less prevalent and persistent than their Arctic counterparts. Furthermore, they typically have higher bases and show a weaker temperature dependence than in the Arctic, suggesting a more pristine Antarctic atmosphere. In addition, the clouds (including both water phases) typically extend toward relatively lower altitudes, and their relation to inversions near cloud top is often similar to those observed in the Arctic.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. Univ. of Wisconsin-Madison, Madison, WI (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1461557
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 123; Journal Issue: 11; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; polar clouds; AWARE; mixed-phase clouds; cloud inversion configuration; cloud persistence; McMurdo

Citation Formats

Silber, Israel, Verlinde, Johannes, Eloranta, Edwin W., and Cadeddu, Maria. Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology. United States: N. p., 2018. Web. doi:10.1029/2018JD028279.
Silber, Israel, Verlinde, Johannes, Eloranta, Edwin W., & Cadeddu, Maria. Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology. United States. doi:10.1029/2018JD028279.
Silber, Israel, Verlinde, Johannes, Eloranta, Edwin W., and Cadeddu, Maria. Tue . "Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology". United States. doi:10.1029/2018JD028279. https://www.osti.gov/servlets/purl/1461557.
@article{osti_1461557,
title = {Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology},
author = {Silber, Israel and Verlinde, Johannes and Eloranta, Edwin W. and Cadeddu, Maria},
abstractNote = {Polar cloud radiative forcing plays a crucial role in the determination of the surface and atmospheric energy balance through processes which are not yet fully understood. While there is a broad and fairly complete database of cloud measurements from several Arctic sites and field campaigns through the past two decades, the recent one-year long U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) field campaign at McMurdo Station has provided a hitherto unmatched multiple-instrument set of ground-based Antarctic cloud measurements. These observations are processed and used to derive the main cloud and liquid containing layer properties: occurrence fraction, cloud persistence and boundaries, and configuration relative to temperature and moisture inversions. The results are compared to previous Arctic observations. It is concluded that clouds and liquid-bearing layers over McMurdo Station are essentially less prevalent and persistent than their Arctic counterparts. Furthermore, they typically have higher bases and show a weaker temperature dependence than in the Arctic, suggesting a more pristine Antarctic atmosphere. In addition, the clouds (including both water phases) typically extend toward relatively lower altitudes, and their relation to inversions near cloud top is often similar to those observed in the Arctic.},
doi = {10.1029/2018JD028279},
journal = {Journal of Geophysical Research: Atmospheres},
number = 11,
volume = 123,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Topographic maps of Antarctica (left) and the region surrounding Ross Island (right; this region is designated by the red box in the left panel). Contour lines in the right panel are depicted every 500 m. The 1 arc-minute topographic data were developed by the National Geophysical Data Centermore » (NGDC, Amante, 2009), and is freely available at https://www.ngdc.noaa.gov/mgg/global/global.html« less

Save / Share:

Works referenced in this record:

Climate of West Antarctica and Influence of Marine Air Intrusions
journal, January 2011


A review of the climate of Mawson – a representative strong wind site in East Antarctica
journal, March 1990


CALIPSO/CALIOP Cloud Phase Discrimination Algorithm
journal, November 2009

  • Hu, Yongxiang; Winker, David; Vaughan, Mark
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 11
  • DOI: 10.1175/2009JTECHA1280.1

Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross ice shelf, Antarctica
journal, January 1993

  • Bromwich, David H.; Carrasco, Jorge F.; Liu, Zhong
  • Journal of Geophysical Research, Vol. 98, Issue D7
  • DOI: 10.1029/93JD00562

Lidar studies of the polar troposphere: Lidar studies of the polar troposphere
journal, August 2011

  • Nott, Graeme J.; Duck, Thomas J.
  • Meteorological Applications, Vol. 18, Issue 3
  • DOI: 10.1002/met.289

Clouds at Arctic Atmospheric Observatories. Part II: Thermodynamic Phase Characteristics
journal, March 2011

  • Shupe, Matthew D.
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 3
  • DOI: 10.1175/2010JAMC2468.1

Fifty-year Amundsen–Scott South Pole station surface climatology
journal, November 2012


Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica
journal, January 1993

  • Carrasco, Jorge F.; Bromwich, David H.
  • Journal of Geophysical Research, Vol. 98, Issue D7
  • DOI: 10.1029/92JD02821

Temperature Trends at the South Pole and McMurdo Sound
journal, October 1989


Distribution and Characteristics of Mesoscale Cyclones in the Antarctic: Ross Sea Eastward to the Weddell Sea*
journal, February 2003


Characteristics of immersion freezing nuclei at the South Pole station in Antarctica
journal, January 2011

  • Ardon-Dryer, K.; Levin, Z.; Lawson, R. P.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-4015-2011

Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems
journal, January 2008

  • Wang, Zhien; Stephens, Graeme; Deshler, Terry
  • Geophysical Research Letters, Vol. 35, Issue 13
  • DOI: 10.1029/2008GL034209

Satellite Analyses of Antarctic Katabatic Wind Behavior
journal, July 1989


Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites: ANTARCTIC CLOUDS, CLOUDSAT AND CALIPSO
journal, February 2012

  • Adhikari, Loknath; Wang, Zhien; Deng, Min
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D4
  • DOI: 10.1029/2011JD016719

Resilience of persistent Arctic mixed-phase clouds
journal, December 2011

  • Morrison, Hugh; de Boer, Gijs; Feingold, Graham
  • Nature Geoscience, Vol. 5, Issue 1
  • DOI: 10.1038/ngeo1332

Satellite remote sensing of blowing snow properties over Antarctica
journal, January 2011

  • Palm, Stephen P.; Yang, Yuekui; Spinhirne, James D.
  • Journal of Geophysical Research, Vol. 116, Issue D16
  • DOI: 10.1029/2011JD015828

Antarctic atmospheric temperature trend patterns from satellite observations
journal, January 2007

  • Johanson, Celeste M.; Fu, Qiang
  • Geophysical Research Letters, Vol. 34, Issue 12
  • DOI: 10.1029/2006GL029108

Satellite Observations of Katabatic-Wind Propagation for Great Distances across the Ross Ice Shelf
journal, September 1992


A polar cloud analysis based on Micro-pulse Lidar measurements at Ny-Alesund, Svalbard and Syowa, Antarctica
journal, January 2003

  • Shiobara, Masataka; Yabuki, Masanori; Kobayashi, Hiroshi
  • Physics and Chemistry of the Earth, Parts A/B/C, Vol. 28, Issue 28-32
  • DOI: 10.1016/j.pce.2003.08.057

Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project
journal, December 2001

  • Westwater, Ed R.; Han, Yong; Shupe, Matthew D.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D23
  • DOI: 10.1029/2000JD000055

Atmospheric Conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting Open Water and Sea Ice Surfaces during Melt and Freeze-Up Seasons
journal, December 2016

  • Sotiropoulou, Georgia; Tjernström, Michael; Sedlar, Joseph
  • Journal of Climate, Vol. 29, Issue 24
  • DOI: 10.1175/JCLI-D-16-0211.1

The Influence of Blowing Snow and Precipitation on Snow Depth Change across the Ross Ice Shelf and Ross Sea Regions of Antarctica
journal, June 2010

  • Knuth, Shelley L.; Tripoli, Gregory J.; Thom, Jonathan E.
  • Journal of Applied Meteorology and Climatology, Vol. 49, Issue 6
  • DOI: 10.1175/2010JAMC2245.1

On the Relationship between Thermodynamic Structure and Cloud Top, and Its Climate Significance in the Arctic
journal, April 2012

  • Sedlar, Joseph; Shupe, Matthew D.; Tjernström, Michael
  • Journal of Climate, Vol. 25, Issue 7
  • DOI: 10.1175/JCLI-D-11-00186.1

Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements
journal, January 2010

  • Hu, Yongxiang; Rodier, Sharon; Xu, Kuan-man
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012384

The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis
journal, January 2009

  • Tjernström, Michael; Graversen, Rune Grand
  • Quarterly Journal of the Royal Meteorological Society, Vol. 135, Issue 639
  • DOI: 10.1002/qj.380

Climatology and Interannual Variability of Arctic Cyclone Activity: 1948–2002
journal, June 2004


An improved algorithm for polar cloud-base detection by ceilometer over the ice sheets
journal, January 2014

  • Van Tricht, K.; Gorodetskaya, I. V.; Lhermitte, S.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 5
  • DOI: 10.5194/amt-7-1153-2014

Unique manifestations of mixed‐phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica
journal, March 2016

  • Scott, Ryan C.; Lubin, Dan
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2015GL067246

Implications of Limited Liquid Water Path on Static Mixing within Arctic Low-Level Clouds
journal, December 2014


Elastic backscattering lidar system for atmospheric measurements in Antarctica
journal, May 1989

  • Sacco, V. M.; Castagnoli, F.; Morandi, M.
  • Optical and Quantum Electronics, Vol. 21, Issue 3
  • DOI: 10.1007/BF02192002

The microphysics of clouds over the Antarctic Peninsula – Part 1: Observations
journal, January 2016

  • Lachlan-Cope, Tom; Listowski, Constantino; O'Shea, Sebastian
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 24
  • DOI: 10.5194/acp-16-15605-2016

A ground-based multisensor cloud phase classifier
journal, January 2007


Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion
journal, January 2011

  • Solomon, A.; Shupe, M. D.; Persson, P. O. G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 19
  • DOI: 10.5194/acp-11-10127-2011

Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions
journal, October 2013


Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part I: Feature Detection
journal, November 2015

  • Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.
  • Journal of Atmospheric and Oceanic Technology, Vol. 32, Issue 11
  • DOI: 10.1175/JTECH-D-14-00150.1

Error Characteristics of Ceilometer-Based Observations of Cloud Amount
journal, July 2016

  • Wagner, Timothy J.; Kleiss, Jessica M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 33, Issue 7
  • DOI: 10.1175/JTECH-D-15-0258.1

The Climate of the McMurdo, Antarctica, Region as Represented by One Year of Forecasts from the Antarctic Mesoscale Prediction System
journal, April 2005

  • Monaghan, Andrew J.; Bromwich, David H.; Powers, Jordan G.
  • Journal of Climate, Vol. 18, Issue 8
  • DOI: 10.1175/JCLI3336.1

Blowing snow at Mizuho station, Antarctica
journal, July 2005

  • Nishimura, Kouichi; Nemoto, Masaki
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 363, Issue 1832
  • DOI: 10.1098/rsta.2005.1599

The Three-Dimensional Distribution of Clouds over the Southern Hemisphere High Latitudes
journal, November 2011

  • Verlinden, Kathryn L.; Thompson, David W. J.; Stephens, Graeme L.
  • Journal of Climate, Vol. 24, Issue 22
  • DOI: 10.1175/2011JCLI3922.1

Formation and Persistence of Summertime Arctic Stratus Clouds
journal, August 1976


Antarctic Low-Tropospheric Humidity Inversions: 10-Yr Climatology
journal, July 2013


Retrieving Liquid Wat0er Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement (ARM) Microwave Radiometers
journal, November 2007

  • Turner, David D.; Clough, Shepard A.; Liljegren, James C.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, Issue 11
  • DOI: 10.1109/TGRS.2007.903703

Passive and active detection of clouds: Comparisons between MODIS and GLAS observations
journal, January 2004


Practical model for the calculation of multiply scattered lidar returns
journal, January 1998


The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources
journal, February 2014

  • Solomon, Amy; Shupe, Matthew D.; Persson, Ola
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 2
  • DOI: 10.1175/JAS-D-13-0179.1

Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget
journal, January 2002


Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties
journal, March 2011

  • Shupe, Matthew D.; Walden, Von P.; Eloranta, Edwin
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 3
  • DOI: 10.1175/2010JAMC2467.1

Stratiform Cloud—Inversion Characterization During the Arctic Melt Season
journal, July 2009


Orographic clouds in north Victoria Land from AVHRR images
journal, October 1996


Synoptically Driven Arctic Winter States
journal, March 2011

  • Stramler, Kirstie; Del Genio, Anthony D.; Rossow, William B.
  • Journal of Climate, Vol. 24, Issue 6
  • DOI: 10.1175/2010JCLI3817.1

Significant Warming of the Antarctic Winter Troposphere
journal, March 2006


Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances
journal, January 2015

  • Fielding, M. D.; Chiu, J. C.; Hogan, R. J.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 7
  • DOI: 10.5194/amt-8-2663-2015

Climate trends at Eureka in the Canadian high arctic
journal, June 2010

  • Lesins, G.; Duck, T. J.; Drummond, J. R.
  • Atmosphere-Ocean, Vol. 48, Issue 2
  • DOI: 10.3137/AO1103.2010

Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination
journal, January 2007


Ground-Based Infrared Remote Sensing of Cloud Properties over the Antarctic Plateau. Part I: Cloud-Base Heights
journal, July 2001


High and Dry: New Observations of Tropospheric and Cloud Properties above the Greenland Ice Sheet
journal, February 2013

  • Shupe, Matthew D.; Turner, David D.; Walden, Von P.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 2
  • DOI: 10.1175/BAMS-D-11-00249.1

The formation of ice in a long-lived supercooled layer cloud: Ice Formation in Altocumulus
journal, January 2013

  • Westbrook, C. D.; Illingworth, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 139, Issue 677
  • DOI: 10.1002/qj.2096

Extraordinary blowing snow transport events in East Antarctica
journal, June 2009

  • Scarchilli, Claudio; Frezzotti, Massimo; Grigioni, Paolo
  • Climate Dynamics, Vol. 34, Issue 7-8
  • DOI: 10.1007/s00382-009-0601-0

Tropospheric clouds in Antarctica
journal, January 2012

  • Bromwich, David H.; Nicolas, Julien P.; Hines, Keith M.
  • Reviews of Geophysics, Vol. 50, Issue 1
  • DOI: 10.1029/2011RG000363

The Arm Climate Research Facility: A Review of Structure and Capabilities
journal, March 2013

  • Mather, James H.; Voyles, Jimmy W.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 3
  • DOI: 10.1175/BAMS-D-11-00218.1

Antarctic clouds studied for first time in five decades
journal, January 2016


Genesis of diamond dust, ice fog and thick cloud episodes observed and modelled above Dome C, Antarctica
journal, January 2017

  • Ricaud, Philippe; Bazile, Eric; del Guasta, Massimo
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 8
  • DOI: 10.5194/acp-17-5221-2017

Modeled Antarctic Precipitation. Part I: Spatial and Temporal Variability*
journal, February 2004


Synoptic Activity in the Seas around Antarctica
journal, February 2003


The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment
journal, December 1991


Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements
journal, January 2008

  • Sassen, Kenneth; Wang, Zhien; Liu, Dong
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2008JD009972

Properties of austral winter clouds derived from radiometric profiles at the South Pole
journal, January 1993

  • Stone, Robert S.
  • Journal of Geophysical Research, Vol. 98, Issue D7
  • DOI: 10.1029/92JD02213

Arctic Mixed-Phase Stratiform Cloud Properties from Multiple Years of Surface-Based Measurements at Two High-Latitude Locations
journal, September 2009

  • de Boer, Gijs; Eloranta, Edwin W.; Shupe, Matthew D.
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 9
  • DOI: 10.1175/2009JAS3029.1

Multi-year measurements of cloud base heights at South Pole by lidar
journal, January 2005


First extended validation of satellite microwave liquid water path with ship-based observations of marine low clouds: SATELLITE MW MARINE CLOUD VALIDATION
journal, June 2016

  • Painemal, David; Greenwald, Thomas; Cadeddu, Maria
  • Geophysical Research Letters, Vol. 43, Issue 12
  • DOI: 10.1002/2016GL069061

Antarctica cloud cover for October 2003 from GLAS satellite lidar profiling: ANTARCTICA CLOUDS FROM SATELLITE LIDAR
journal, September 2005

  • Spinhirne, J. D.; Palm, S. P.; Hart, W. D.
  • Geophysical Research Letters, Vol. 32, Issue 22
  • DOI: 10.1029/2005GL023782

Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part II: Extinction
journal, November 2015


Foehn Winds in the McMurdo Dry Valleys, Antarctica: The Origin of Extreme Warming Events
journal, July 2010

  • Speirs, Johanna C.; Steinhoff, Daniel F.; McGowan, Hamish A.
  • Journal of Climate, Vol. 23, Issue 13
  • DOI: 10.1175/2010JCLI3382.1

Impact of Antarctic mixed-phase clouds on climate
journal, December 2014

  • Lawson, R. Paul; Gettelman, Andrew
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 51
  • DOI: 10.1073/pnas.1418197111

A High-Resolution Numerical Simulation of the Wind Flow in the Ross Island Region, Antarctica
journal, February 2003


January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
journal, June 2017

  • Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15799

On the Formation of Continental Polar Air
journal, September 1983


Airborne lidar observations of clouds in the Antarctic troposphere
journal, June 1989

  • Morley, Bruce M.; Uthe, Edward E.; Viezee, William
  • Geophysical Research Letters, Vol. 16, Issue 6
  • DOI: 10.1029/GL016i006p00491

Global characterization of cirrus clouds using CALIPSO data
journal, January 2008

  • Nazaryan, Hovakim; McCormick, M. Patrick; Menzel, W. Paul
  • Journal of Geophysical Research, Vol. 113, Issue D16
  • DOI: 10.1029/2007JD009481

Version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network: South Pole: VERSION 2 UV DATA, SOUTH POLE
journal, November 2004

  • Bernhard, G.; Booth, C. R.; Ehramjian, J. C.
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D21
  • DOI: 10.1029/2004JD004937

    Works referencing / citing this record:

    Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station—Part II: Radiative Impact During Different Synoptic Regimes
    journal, February 2019

    • Silber, Israel; Verlinde, Johannes; Cadeddu, Maria
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 3
    • DOI: 10.1029/2018jd029471

    Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: geographical and seasonal variations
    journal, January 2019

    • Listowski, Constantino; Delanoë, Julien; Kirchgaessner, Amélie
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 10
    • DOI: 10.5194/acp-19-6771-2019

    Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station—Part II: Radiative Impact During Different Synoptic Regimes
    journal, February 2019

    • Silber, Israel; Verlinde, Johannes; Cadeddu, Maria
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 3
    • DOI: 10.1029/2018jd029471

    Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: geographical and seasonal variations
    journal, January 2019

    • Listowski, Constantino; Delanoë, Julien; Kirchgaessner, Amélie
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 10
    • DOI: 10.5194/acp-19-6771-2019

    Parameterization of In‐Cloud Aerosol Scavenging Due to Atmospheric Ionization: Part 4. Effects of Varying Altitude
    journal, December 2019

    • Zhang, Liang; Tinsley, Brian; Zhou, Limin
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
    • DOI: 10.1029/2018jd030126

    Comparison of Antarctic and Arctic Single‐Layer Stratiform Mixed‐Phase Cloud Properties Using Ground‐Based Remote Sensing Measurements
    journal, September 2019

    • Zhang, Damao; Vogelmann, Andrew; Kollias, Pavlos
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 17-18
    • DOI: 10.1029/2019jd030673

    Persistent Supercooled Drizzle at Temperatures Below −25 °C Observed at McMurdo Station, Antarctica
    journal, October 2019

    • Silber, Israel; Fridlind, Ann M.; Verlinde, Johannes
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 20
    • DOI: 10.1029/2019jd030882

    Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)
    journal, January 2019

    • Hines, Keith M.; Bromwich, David H.; Wang, Sheng-Hung
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 19
    • DOI: 10.5194/acp-19-12431-2019

    Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties
    journal, January 2019

    • Rowe, Penny M.; Cox, Christopher J.; Neshyba, Steven
    • Atmospheric Measurement Techniques, Vol. 12, Issue 9
    • DOI: 10.5194/amt-12-5071-2019