DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ion-channel laser growth rate and beam quality requirements

Abstract

In this study, we determine the growth rate of the exponential radiation amplification in the ion-channel laser, where a relativistic electron beam wiggles in a focusing ion channel that can be created in a wakefield accelerator. For the first time the radiation diffraction, which can limit the amplification, is taken into account. The electron beam quality requirements to obtain this amplification are also presented. It is shown that both the beam energy and wiggler parameter spreads should be limited. Two-dimensional and three-dimensional particle-in-cell simulations of the self-consistent ion-channel laser confirm our theoretical predictions.

Authors:
 [1];  [2];  [3];  [4];  [5]
  1. CEA DAM DIF, Arpajon (France)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. DCTI/ISCTE - Lisbon Univ. Institute, Lisbon (Portugal); Instituto Superior Tecnico, Lisbon (Portugal)
  4. Univ. of California, Los Angeles, CA (United States)
  5. Instituto Superior Tecnico, Lisbon (Portugal)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1461531
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Plasma Physics
Additional Journal Information:
Journal Volume: 84; Journal Issue: 03; Journal ID: ISSN 0022-3778
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; intense particle beams

Citation Formats

Davoine, Xavier, Fiuza, F., Fonseca, R. A., Mori, W. B., and Silva, L. O. Ion-channel laser growth rate and beam quality requirements. United States: N. p., 2018. Web. doi:10.1017/s0022377818000429.
Davoine, Xavier, Fiuza, F., Fonseca, R. A., Mori, W. B., & Silva, L. O. Ion-channel laser growth rate and beam quality requirements. United States. https://doi.org/10.1017/s0022377818000429
Davoine, Xavier, Fiuza, F., Fonseca, R. A., Mori, W. B., and Silva, L. O. Mon . "Ion-channel laser growth rate and beam quality requirements". United States. https://doi.org/10.1017/s0022377818000429. https://www.osti.gov/servlets/purl/1461531.
@article{osti_1461531,
title = {Ion-channel laser growth rate and beam quality requirements},
author = {Davoine, Xavier and Fiuza, F. and Fonseca, R. A. and Mori, W. B. and Silva, L. O.},
abstractNote = {In this study, we determine the growth rate of the exponential radiation amplification in the ion-channel laser, where a relativistic electron beam wiggles in a focusing ion channel that can be created in a wakefield accelerator. For the first time the radiation diffraction, which can limit the amplification, is taken into account. The electron beam quality requirements to obtain this amplification are also presented. It is shown that both the beam energy and wiggler parameter spreads should be limited. Two-dimensional and three-dimensional particle-in-cell simulations of the self-consistent ion-channel laser confirm our theoretical predictions.},
doi = {10.1017/s0022377818000429},
journal = {Journal of Plasma Physics},
number = 03,
volume = 84,
place = {United States},
year = {Mon May 21 00:00:00 EDT 2018},
month = {Mon May 21 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

FIGURE 1 FIGURE 1: Evolution of the radiation growth as a function of the energy spread ($a$) and $K$ spread ($b$). Two-dimensional simulations with $γ$0 = 50, $K$ = 1 and $I$ = 0.8 kA. ($a$) The green, light blue, dark blue, red and purple curves correspond to respectively $ΔE$/$E$= 0, $ΔE$/$E$more » = 0.01, $ΔE$/$E$ = 0.02, $ΔE$/$E$ = 0.04 and 1$ΔE$/$E$ = 0.08. (b) The green, light blue, dark blue, red and purple curves correspond to respectively $ΔK$/$K$ = 0, $ΔK$/$K$ = 0.02, $ΔK$/$K$ = 0.04, $ΔK$/$K$ = 0.08 and $ΔK$/$K$ = 0.12. The dotted black and dotted red lines correspond to respectively the theoretical growth rate in the 1-D limit and in two dimensions. The $γ$ and $K$ spreads correspond to root-mean-square values.« less

Save / Share:

Works referenced in this record:

Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction
journal, September 2004


Magnetic Control of Particle Injection in Plasma Based Accelerators
journal, May 2011


A laser–plasma accelerator producing monoenergetic electron beams
journal, September 2004


Space-charge oscillations in a self-modulated electron beam in multi-undulator free-electron lasers
journal, July 1997

  • Rosenzweig, J.; Pellegrini, C.; Serafini, L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 393, Issue 1-3
  • DOI: 10.1016/S0168-9002(97)00516-0

Vlasov formalism of the laser driven ion channel x-ray laser
journal, February 2007

  • Liu, C. S.; Tripathi, V. K.; Kumar, Naveen
  • Plasma Physics and Controlled Fusion, Vol. 49, Issue 3
  • DOI: 10.1088/0741-3335/49/3/010

Ion-channel laser
journal, May 1990


High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding
journal, September 2004

  • Geddes, C. G. R.; Toth, Cs.; van Tilborg, J.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02900

The ion channel free-electron laser with varying betatron amplitude
journal, September 2014


Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames
journal, March 2010

  • Martins, S. F.; Fonseca, R. A.; Lu, W.
  • Nature Physics, Vol. 6, Issue 4
  • DOI: 10.1038/nphys1538

Monoenergetic beams of relativistic electrons from intense laser–plasma interactions
journal, September 2004

  • Mangles, S. P. D.; Murphy, C. D.; Najmudin, Z.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02939

Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime
journal, April 2006


A New Absorbing Layer Boundary Condition for the Wave Equation
journal, December 2000


Numerical Cherenkov instabilities in electromagnetic particle codes
journal, August 1974


Ionization Induced Trapping in a Laser Wakefield Accelerator
journal, January 2010


Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses
journal, December 2006


Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes
journal, January 2010


On the amplification mechanism of the ion-channel laser
journal, January 1990

  • Chen, K. -R.; Katsouleas, T. C.; Dawson, J. M.
  • IEEE Transactions on Plasma Science, Vol. 18, Issue 5
  • DOI: 10.1109/27.62351

Electromagnetic instability of the ion‐focused regime
journal, March 1992

  • Whittum, David H.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 3
  • DOI: 10.1063/1.860271

Works referencing / citing this record:

Far-field constant-gradient laser accelerator of electrons in an ion channel
journal, August 2018

  • Khudik, Vladimir N.; Zhang, Xi; Wang, Tianhong
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5036967

Direct laser acceleration of electrons in the plasma bubble by tightly focused laser pulses
journal, August 2019

  • Wang, Tianhong; Khudik, Vladimir; Arefiev, Alexey
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5110407

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.