DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures

Abstract

Here, two additional structural forms, free-standing nanomembranes and microtubes, are reported and added to the vanadium dioxide (VO2) material family. Free-standing VO2 nanomembranes were fabricated by precisely thinning as-grown VO2 thin films and etching away the sacrificial layer underneath. VO2 microtubes with a range of controllable diameters were rolled-up from the VO2 nanomembranes. When a VO2 nanomembrane is rolled-up into a microtubular structure, a significant compressive strain is generated and accommodated therein, which decreases the phase transition temperature of the VO2 material. The magnitude of the compressive strain is determined by the curvature of the VO2 microtube, which can be rationally and accurately designed by controlling the tube diameter during the rolling-up fabrication process. The VO2 microtube rolling-up process presents a novel way to controllably tune the phase transition temperature of VO2 materials over a wide range toward practical applications. Furthermore, the rolling-up process is reversible. A VO2 microtube can be transformed back into a nanomembrane by introducing an external strain. Because of its tunable phase transition temperature and reversible shape transformation, the VO2 nanomembrane-microtube structure is promising for device applications. As an example application, a tubular microactuator device with low driving energy but large displacement is demonstrated at variousmore » triggering temperatures.« less

Authors:
 [1];  [1];  [2];  [3];  [2]; ORCiD logo [1]
  1. Fudan Univ., Shanghai (People's Republic of China)
  2. Univ. of Illinois at Chicago, Chicago, IL (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1461508
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 5; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; actuator; microtubes; nanomembranes; phase transition; Strain engineering; vanadium dioxide

Citation Formats

Tian, Ziao, Xu, Borui, Hsu, Bo, Stan, Liliana, Yang, Zheng, and Mei, Yong Feng. Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.8b00483.
Tian, Ziao, Xu, Borui, Hsu, Bo, Stan, Liliana, Yang, Zheng, & Mei, Yong Feng. Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures. United States. https://doi.org/10.1021/acs.nanolett.8b00483
Tian, Ziao, Xu, Borui, Hsu, Bo, Stan, Liliana, Yang, Zheng, and Mei, Yong Feng. Tue . "Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures". United States. https://doi.org/10.1021/acs.nanolett.8b00483. https://www.osti.gov/servlets/purl/1461508.
@article{osti_1461508,
title = {Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures},
author = {Tian, Ziao and Xu, Borui and Hsu, Bo and Stan, Liliana and Yang, Zheng and Mei, Yong Feng},
abstractNote = {Here, two additional structural forms, free-standing nanomembranes and microtubes, are reported and added to the vanadium dioxide (VO2) material family. Free-standing VO2 nanomembranes were fabricated by precisely thinning as-grown VO2 thin films and etching away the sacrificial layer underneath. VO2 microtubes with a range of controllable diameters were rolled-up from the VO2 nanomembranes. When a VO2 nanomembrane is rolled-up into a microtubular structure, a significant compressive strain is generated and accommodated therein, which decreases the phase transition temperature of the VO2 material. The magnitude of the compressive strain is determined by the curvature of the VO2 microtube, which can be rationally and accurately designed by controlling the tube diameter during the rolling-up fabrication process. The VO2 microtube rolling-up process presents a novel way to controllably tune the phase transition temperature of VO2 materials over a wide range toward practical applications. Furthermore, the rolling-up process is reversible. A VO2 microtube can be transformed back into a nanomembrane by introducing an external strain. Because of its tunable phase transition temperature and reversible shape transformation, the VO2 nanomembrane-microtube structure is promising for device applications. As an example application, a tubular microactuator device with low driving energy but large displacement is demonstrated at various triggering temperatures.},
doi = {10.1021/acs.nanolett.8b00483},
journal = {Nano Letters},
number = 5,
volume = 18,
place = {United States},
year = {Tue Apr 10 00:00:00 EDT 2018},
month = {Tue Apr 10 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Fabrication and characteristics of an ultrathin VO2 nanomembrane. (a) Schematic of the microfabrication process using rolling-up nanotechnology. (b) Cross-sectional SEM image of the VO2 nanomembrane before the thinning process. (c) Cross-sectional TEM image of the thinned VO2 nanomembrane. (d) SEM image of the ultrathin VO2 nanomembrane. (e) SEMmore » image of the VO2 microtube. (f) Bending rigidity of various materials as a function of thickness. (g) Temperature-dependent resistance of VO2 nanomembranes with thicknesses of 200 and 28 nm. The resistance decreases with increasing temperature and vice versa due to the phase transition.« less

Save / Share:

Works referenced in this record:

Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions
journal, August 2011


Self-heating and External Strain Coupling Induced Phase Transition of VO2 Nanobeam as Single Domain Switch
journal, July 2011


Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams
journal, January 2016


External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor
journal, September 2010


Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition
journal, December 2013


Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram
journal, July 2010


Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature
journal, February 1969


Very large anisotropy in the dc conductivity of epitaxial VO2 thin films grown on (011) rutile TiO2 substrates
journal, December 2008

  • Lu, Jiwei; West, Kevin G.; Wolf, Stuart A.
  • Applied Physics Letters, Vol. 93, Issue 26
  • DOI: 10.1063/1.3058769

Confocal Raman Microscopy across the Metal−Insulator Transition of Single Vanadium Dioxide Nanoparticles
journal, February 2009

  • Donev, Eugenii U.; Lopez, Rene; Feldman, Leonard C.
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl8031839

Transport properties of ultra-thin VO 2 films on (001) TiO 2 grown by reactive molecular-beam epitaxy
journal, October 2015

  • Paik, Hanjong; Moyer, Jarrett A.; Spila, Timothy
  • Applied Physics Letters, Vol. 107, Issue 16
  • DOI: 10.1063/1.4932123

Sharpened VO 2 Phase Transition via Controlled Release of Epitaxial Strain
journal, August 2017


Strain Dynamics of Ultrathin VO 2 Film Grown on TiO 2 (001) and the Associated Phase Transition Modulation
journal, June 2014

  • Fan, L. L.; Chen, S.; Luo, Z. L.
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501480f

Synthesis, assembly and applications of semiconductor nanomembranes
journal, September 2011

  • Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G.
  • Nature, Vol. 477, Issue 7362, p. 45-53
  • DOI: 10.1038/nature10381

3D Microfabrication using Stimuli-Responsive Self-Folding Polymer Films
journal, January 2013


Biomimetic 3D self-assembling biomicroconstructs by spontaneous deformation of thin polymer films
journal, January 2012


Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers
journal, November 2008

  • Mei, Yongfeng; Huang, Gaoshan; Solovev, Alexander A.
  • Advanced Materials, Vol. 20, Issue 21, p. 4085-4090
  • DOI: 10.1002/adma.200801589

On-Chip Inductors with Self-Rolled-Up SiN x Nanomembrane Tubes: A Novel Design Platform for Extreme Miniaturization
journal, February 2012

  • Huang, Wen; Yu, Xin; Froeter, Paul
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303395d

Self-Assembled Ultra-Compact Energy Storage Elements Based on Hybrid Nanomembranes
journal, July 2010

  • Bof Bufon, Carlos César; Cojal González, José David; Thurmer, Dominic J.
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl1010367

Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes
journal, January 2012

  • Wang, Jiao; Zhan, Tianrong; Huang, Gaoshan
  • Optics Express, Vol. 20, Issue 17
  • DOI: 10.1364/OE.20.018555

Deterministic Self-Rolling of Ultrathin Nanocrystalline Diamond Nanomembranes for 3D Tubular/Helical Architecture
journal, February 2017


Catalytic Microtubular Jet Engines Self-Propelled by Accumulated Gas Bubbles
journal, July 2009

  • Solovev, Alexander A.; Mei, Yongfeng; Bermúdez Ureña, Esteban
  • Small, Vol. 5, Issue 14
  • DOI: 10.1002/smll.200900021

Fabrication of Ultrathin Single‐Crystal Diamond Membranes
journal, December 2008

  • Fairchild, Barbara A.; Olivero, Paolo; Rubanov, Sergey
  • Advanced Materials, Vol. 20, Issue 24
  • DOI: 10.1002/adma.200801460

Stimulus-Responsive Micro-Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window
journal, December 2016


Anomalously low electronic thermal conductivity in metallic vanadium dioxide
journal, January 2017


Local Temperature Redistribution and Structural Transition During Joule-Heating-Driven Conductance Switching in VO 2
journal, July 2013

  • Kumar, Suhas; Pickett, Matthew D.; Strachan, John Paul
  • Advanced Materials, Vol. 25, Issue 42
  • DOI: 10.1002/adma.201302046

Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials
journal, July 2017


Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies
journal, January 2012

  • Sim, Jai S.; Zhou, You; Ramanathan, Shriram
  • Nanoscale, Vol. 4, Issue 22
  • DOI: 10.1039/c2nr32049e

Self-Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries
journal, September 2010

  • Ji, Heng-Xing; Wu, Xing-Long; Fan, Li-Zhen
  • Advanced Materials, Vol. 22, Issue 41
  • DOI: 10.1002/adma.201001422

Effects of Thickness on the Metal–Insulator Transition in Free-Standing Vanadium Dioxide Nanocrystals
journal, February 2017


Raman scattering from VO 2 single crystals: A study of the effects of surface oxidation
journal, August 1990


Curvature estimation for multilayer hinged structures with initial strains
journal, January 2003

  • Nikishkov, G. P.
  • Journal of Applied Physics, Vol. 94, Issue 8
  • DOI: 10.1063/1.1610777

Rolled-up micro- and nanotubes from single-material thin films
journal, November 2006

  • Songmuang, R.; Deneke, Ch.; Schmidt, O. G.
  • Applied Physics Letters, Vol. 89, Issue 22
  • DOI: 10.1063/1.2390647

Modified Timoshenko formula for bending of ultrathin strained bilayer films
journal, January 2008

  • Zang, Ji; Liu, Feng
  • Applied Physics Letters, Vol. 92, Issue 2
  • DOI: 10.1063/1.2828043

Epitaxial VO 2 thin film-based radio-frequency switches with thermal activation
journal, August 2017

  • Lee, Jaeseong; Lee, Daesu; Cho, Sang June
  • Applied Physics Letters, Vol. 111, Issue 6
  • DOI: 10.1063/1.4998452

Epitaxial VO 2 thin-film-based radio-frequency switches with electrical activation
journal, August 2017

  • Lee, Jaeseong; Lee, Daesu; Cho, Sang June
  • Applied Physics Express, Vol. 10, Issue 9
  • DOI: 10.7567/APEX.10.091101

Pressure–Temperature Phase Diagram of Vanadium Dioxide
journal, March 2017


Phase transition behavior in microcantilevers coated with M 1 -phase VO 2 and M 2 -phase VO 2 :Cr thin films
journal, May 2012

  • Rúa, Armando; Cabrera, Rafmag; Coy, Horacio
  • Journal of Applied Physics, Vol. 111, Issue 10
  • DOI: 10.1063/1.4716191

Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators
journal, July 2016

  • Dong, Kaichen; Lou, Shuai; Choe, Hwan Sung
  • Applied Physics Letters, Vol. 109, Issue 2
  • DOI: 10.1063/1.4958692

Flexible, All-Inorganic Actuators Based on Vanadium Dioxide and Carbon Nanotube Bimorphs
journal, December 2016


Performance Limits of Microactuation with Vanadium Dioxide as a Solid Engine
journal, February 2013

  • Wang, Kevin; Cheng, Chun; Cardona, Edy
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn305419e

Bending in VO2-coated microcantilevers suitable for thermally activated actuators
journal, April 2010

  • Rúa, Armando; Fernández, Félix E.; Sepúlveda, Nelson
  • Journal of Applied Physics, Vol. 107, Issue 7
  • DOI: 10.1063/1.3369282

Direct measurement of compositional complexity-induced electronic inhomogeneity in VO2 thin films grown on gate dielectrics
journal, May 2011

  • Yang, Zheng; Ramanathan, Shriram
  • Applied Physics Letters, Vol. 98, Issue 19
  • DOI: 10.1063/1.3590920

Etching Characteristics of VO 2 Thin Films Using Inductively Coupled Cl 2 /Ar Plasma
journal, August 2009

  • Ham, Yong-Hyun; Efremov, Alexander; Min, Nam-Ki
  • Japanese Journal of Applied Physics, Vol. 48, Issue 8
  • DOI: 10.1143/JJAP.48.08HD04

Ultrathin Films of VO 2 on r-Cut Sapphire Achieved by Postdeposition Etching
journal, May 2016

  • Yamin, Tony; Wissberg, Shai; Cohen, Hagai
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 23
  • DOI: 10.1021/acsami.6b02859

Structural Aspects of the Metal-Insulator Transitions in Cr-Doped V O 2
journal, April 1972


Dynamics of photothermally driven VO 2 -coated microcantilevers
journal, November 2011

  • Cabrera, Rafmag; Merced, Emmanuelle; Sepúlveda, Nelson
  • Journal of Applied Physics, Vol. 110, Issue 9
  • DOI: 10.1063/1.3658776

Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs
journal, February 2012

  • Liu, Kai; Cheng, Chun; Cheng, Zhenting
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303405g

Thinning and Shaping Solid Films into Functional and Integrative Nanomembranes
journal, April 2012

  • Huang, Gaoshan; Mei, Yongfeng
  • Advanced Materials, Vol. 24, Issue 19, p. 2517-2546
  • DOI: 10.1002/adma.201200574

n-Channel MOSFETs Fabricated on SiGe Dots for Strain-Enhanced Mobility
journal, October 2010

  • Jovanovi, V.; Biasotto, C.; Nanver, L. K.
  • IEEE Electron Device Letters, Vol. 31, Issue 10
  • DOI: 10.1109/LED.2010.2058995

Direct-bandgap light-emitting germanium in tensilely strained nanomembranes
journal, November 2011

  • Sanchez-Perez, J. R.; Boztug, C.; Chen, F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 47, p. 18893-18898
  • DOI: 10.1073/pnas.1107968108

Printing, folding and assembly methods for forming 3D mesostructures in advanced materials
journal, March 2017


Works referencing / citing this record:

Shapeable Material Technologies for 3D Self‐Assembly of Mesoscale Electronics
journal, January 2019

  • Karnaushenko, Daniil; Kang, Tong; Schmidt, Oliver G.
  • Advanced Materials Technologies, Vol. 4, Issue 4
  • DOI: 10.1002/admt.201800692

Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers
journal, February 2019

  • Song, Xianglian; Liu, Zizhuo; Scheuer, Jacob
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 16
  • DOI: 10.1088/1361-6463/ab0262

Electrically tunable multifunctional metasurface for integrating phase and amplitude modulation based on hyperbolic metamaterial substrate
journal, January 2018

  • Lee, Yohan; Kim, Sun-Je; Yun, Jeong-Geun
  • Optics Express, Vol. 26, Issue 24
  • DOI: 10.1364/oe.26.032063

Rolled‐up Nanotechnology: Materials Issue and Geometry Capability
journal, December 2018


Bioinspired Actuators Based on Stimuli‐Responsive Polymers
journal, April 2019

  • Cui, Huanqing; Zhao, Qilong; Wang, Yunlong
  • Chemistry – An Asian Journal, Vol. 14, Issue 14
  • DOI: 10.1002/asia.201900292

Deep-learning-enabled self-adaptive microwave cloak without human intervention
journal, March 2020


Single‐Crystalline Vanadium Dioxide Actuators
journal, March 2019

  • Shi, Run; Cai, Xiangbin; Wang, Weijun
  • Advanced Functional Materials, Vol. 29, Issue 20
  • DOI: 10.1002/adfm.201900527

Vanadium Dioxide: The Multistimuli Responsive Material and Its Applications
journal, August 2018


Inorganic Stimuli‐Responsive Nanomembranes for Small‐Scale Actuators and Robots
journal, January 2020

  • Tian, Ziao; Wang, Yang; Chen, Yimeng
  • Advanced Intelligent Systems, Vol. 2, Issue 2
  • DOI: 10.1002/aisy.201900092

Rolled-up single-layered vanadium oxide nanomembranes for microactuators with tunable active temperature
journal, June 2019


Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide
journal, March 2019

  • Shi, Run; Shen, Nan; Wang, Jingwei
  • Applied Physics Reviews, Vol. 6, Issue 1
  • DOI: 10.1063/1.5087864

Thermal-controlled releasing and assembling of functional nanomembranes through polymer pyrolysis
journal, June 2019


Rolling up MoSe 2 Nanomembranes as a Sensitive Tubular Photodetector
journal, August 2019


Inorganic Stimuli‐Responsive Nanomembranes for Small‐Scale Actuators and Robots
journal, January 2020

  • Tian, Ziao; Wang, Yang; Chen, Yimeng
  • Advanced Intelligent Systems, Vol. 2, Issue 2
  • DOI: 10.1002/aisy.202070023

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.