skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells

Abstract

Understanding structure–property relationships is essential for designing energy-rich redox active organic molecules (ROMs) for all-organic redox flow batteries. In this paper we examine thiadiazole ROMs for storage of negative charge in the flow cells. These versatile molecules have excellent solubility and low redox potentials, allowing high energy density to be achieved. By systematically incorporating groups with varying electron accepting/withdrawing ability, we have examined substituent effects on their properties of interest, including redox potentials, calendar lives of charged ROMs in electrolyte, and the flow cell cycling performance. Finally, while the calendar life of energized fluids can be tuned in a predictable fashion over a wide range, the improvements in the calendar life do not automatically translate into the enhanced cycling performance, indicating that in addition to the slow reactions of charged species in the solvent bulk, there are other parasitic reactions that occur only during the electrochemical cycling of the cell and can dramatically affect the cycling lifetime.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [1];  [3];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division. Joint Center for Energy Storage Research
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research. Materials Science Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1461448
Alternate Identifier(s):
OSTI ID: 1434215
Grant/Contract Number:  
AC02-06CH11357; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 6; Journal Issue: 15; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Huang, Jinhua, Duan, Wentao, Zhang, Jingjing, Shkrob, Ilya A., Assary, Rajeev S., Pan, Baofei, Liao, Chen, Zhang, Zhengcheng, Wei, Xiaoliang, and Zhang, Lu. Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells. United States: N. p., 2018. Web. doi:10.1039/c8ta01059e.
Huang, Jinhua, Duan, Wentao, Zhang, Jingjing, Shkrob, Ilya A., Assary, Rajeev S., Pan, Baofei, Liao, Chen, Zhang, Zhengcheng, Wei, Xiaoliang, & Zhang, Lu. Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells. United States. doi:10.1039/c8ta01059e.
Huang, Jinhua, Duan, Wentao, Zhang, Jingjing, Shkrob, Ilya A., Assary, Rajeev S., Pan, Baofei, Liao, Chen, Zhang, Zhengcheng, Wei, Xiaoliang, and Zhang, Lu. Tue . "Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells". United States. doi:10.1039/c8ta01059e. https://www.osti.gov/servlets/purl/1461448.
@article{osti_1461448,
title = {Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells},
author = {Huang, Jinhua and Duan, Wentao and Zhang, Jingjing and Shkrob, Ilya A. and Assary, Rajeev S. and Pan, Baofei and Liao, Chen and Zhang, Zhengcheng and Wei, Xiaoliang and Zhang, Lu},
abstractNote = {Understanding structure–property relationships is essential for designing energy-rich redox active organic molecules (ROMs) for all-organic redox flow batteries. In this paper we examine thiadiazole ROMs for storage of negative charge in the flow cells. These versatile molecules have excellent solubility and low redox potentials, allowing high energy density to be achieved. By systematically incorporating groups with varying electron accepting/withdrawing ability, we have examined substituent effects on their properties of interest, including redox potentials, calendar lives of charged ROMs in electrolyte, and the flow cell cycling performance. Finally, while the calendar life of energized fluids can be tuned in a predictable fashion over a wide range, the improvements in the calendar life do not automatically translate into the enhanced cycling performance, indicating that in addition to the slow reactions of charged species in the solvent bulk, there are other parasitic reactions that occur only during the electrochemical cycling of the cell and can dramatically affect the cycling lifetime.},
doi = {10.1039/c8ta01059e},
journal = {Journal of Materials Chemistry. A},
number = 15,
volume = 6,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Structural formulase for 2,1,3-benzothiadiazole (R-BzNSN) de- rivatives and DBMMB. The substituting group R is H (1), CH3 (2), OCH3 (3), F (4), and CF3 (5).

Save / Share:

Works referenced in this record:

A multiple ion-exchange membrane design for redox flow batteries
journal, January 2014

  • Gu, Shuang; Gong, Ke; Yan, Emily Z.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE00165F

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Materials and Systems for Organic Redox Flow Batteries: Status and Challenges
journal, August 2017


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

A metal-free and all-organic redox flow battery with polythiophene as the electroactive species
journal, January 2014

  • Oh, S. H.; Lee, C.-W.; Chun, D. H.
  • Journal of Materials Chemistry A, Vol. 2, Issue 47, p. 19994-19998
  • DOI: 10.1039/C4TA04730C

Cost and performance model for redox flow batteries
journal, February 2014


A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide
journal, January 2011

  • Li, Zhen; Li, Sha; Liu, Suqin
  • Electrochemical and Solid-State Letters, Vol. 14, Issue 12, p. A171-A173
  • DOI: 10.1149/2.012112esl

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications
journal, February 2017

  • Sevov, Christo S.; Hickey, David P.; Cook, Monique E.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00147

A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte
journal, November 1988

  • Matsuda, Y.; Tanaka, K.; Okada, M.
  • Journal of Applied Electrochemistry, Vol. 18, Issue 6, p. 909-914
  • DOI: 10.1007/BF01016050

A zinc–iron redox-flow battery under $100 per kW h of system capital cost
journal, January 2015

  • Gong, Ke; Ma, Xiaoya; Conforti, Kameron M.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02315G

Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries
journal, November 2014

  • Huang, Jinhua; Cheng, Lei; Assary, Rajeev S.
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401782

Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries
journal, October 2015

  • Sevov, Christo S.; Brooner, Rachel E. M.; Chénard, Etienne
  • Journal of the American Chemical Society, Vol. 137, Issue 45
  • DOI: 10.1021/jacs.5b09572

“Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability
journal, April 2017


Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Towards High-Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species
journal, August 2014

  • Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu
  • Advanced Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aenm.201400678

BF 3 -promoted electrochemical properties of quinoxaline in propylene carbonate
journal, January 2015

  • Carino, Emily V.; Diesendruck, Charles E.; Moore, Jeffrey S.
  • RSC Advances, Vol. 5, Issue 24
  • DOI: 10.1039/C5RA00137D

Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

Progress in redox flow batteries, remaining challenges and their applications in energy storage
journal, January 2012

  • Leung, Puiki; Li, Xiaohong; Ponce de León, Carlos
  • RSC Advances, Vol. 2, Issue 27
  • DOI: 10.1039/c2ra21342g

Next-Generation, High-Energy-Density Redox Flow Batteries
journal, July 2014


Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries
journal, December 2009

  • Liu, Qinghua; Sleightholme, Alice E. S.; Shinkle, Aaron A.
  • Electrochemistry Communications, Vol. 11, Issue 12, p. 2312-2315
  • DOI: 10.1016/j.elecom.2009.10.006

Substituted 2,1,3-Benzothiadiazole- And Thiophene-Based Polymers for Solar Cells − Introducing a New Thermocleavable Precursor
journal, October 2009

  • Helgesen, Martin; Gevorgyan, Suren A.; Krebs, Frederik C.
  • Chemistry of Materials, Vol. 21, Issue 19
  • DOI: 10.1021/cm901937d

Copper ionic liquids: Tunable ligand and anion chemistries to control electrochemistry and deposition morphology
journal, September 2013


An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
journal, June 2012

  • Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N.
  • Advanced Energy Materials, Vol. 2, Issue 11, p. 1390-1396
  • DOI: 10.1002/aenm.201200322

Electron spin resonance and polarographic studies of the radical-anions of some nitrogen- and sulphur-containing heterocyclic molecules
journal, January 1967

  • Atherton, N. M.; Ockwell, Janet N.; Dietz, Roy
  • Journal of the Chemical Society A: Inorganic, Physical, Theoretical
  • DOI: 10.1039/j19670000771

New All-Vanadium Redox Flow Cell
journal, January 1986

  • Skyllas-Kazacos, M.
  • Journal of The Electrochemical Society, Vol. 133, Issue 5
  • DOI: 10.1149/1.2108706

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.