An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis
Abstract
Iron is unstable as an oxygen evolution electrode in alkaline media. Thus, relatively expensive nickel-based electrodes are used in industrial alkaline water electrolysis. We show that an iron substrate can be rendered stable and electrocatalytically active for the oxygen evolution reaction by nano-scale surface modification with nickel. The electrocatalytic activity of such a surface-modified iron electrode is comparable to the recently-reported nickel-based catalysts. The electrocatalytic activity is due to a 50-nanometer layer of a high-surface area a-nickel hydroxide on the iron electrode. The nickel modification renders the iron electrode electrically-conductive, prevents dielectric breakdown, and thus endows anodic stability. The electrocatalytic activity is unchanged even after 1000 hours of continuous operation. The temperature of preparation is critical, as excessive dehydration of the hydroxide layer results in nickel ferrite formation and a drastic reduction in electrocatalytic activity. We report significant insight into the surface chemical composition and structure of the catalyst layer by X-ray Absorption Spectroscopy, Photoelectron Spectroscopy, and Transmission Electron Microscopy. Electrochemical kinetics analysis suggests that surface hydroxo-intermediates react with the hydroxide ions from the solution to evolve oxygen. Furthermore, the surface-modified iron substrates present an opportunity for improving the performance and reducing the cost of alkaline water electrolysis systems. (C)more »
- Authors:
-
- Univ. of Southern California, Los Angeles, CA (United States)
- Argonne National Lab. (ANL), Lemont, IL (United States)
- Publication Date:
- Research Org.:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- OSTI Identifier:
- 1461347
- Grant/Contract Number:
- AC02-06CH11357
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Journal of the Electrochemical Society
- Additional Journal Information:
- Journal Volume: 165; Journal Issue: 5; Journal ID: ISSN 0013-4651
- Publisher:
- The Electrochemical Society
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Electrocatalysis; Electrolysis; Oxygen Evolution
Citation Formats
Mitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., and Narayanan, S. R. An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. United States: N. p., 2018.
Web. doi:10.1149/2.1371805jes.
Mitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., & Narayanan, S. R. An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. United States. https://doi.org/10.1149/2.1371805jes
Mitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., and Narayanan, S. R. Sat .
"An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis". United States. https://doi.org/10.1149/2.1371805jes. https://www.osti.gov/servlets/purl/1461347.
@article{osti_1461347,
title = {An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis},
author = {Mitra, D. and Trinh, P. and Malkhandi, S. and Mecklenburg, M. and Heald, S. M. and Balasubramanian, M. and Narayanan, S. R.},
abstractNote = {Iron is unstable as an oxygen evolution electrode in alkaline media. Thus, relatively expensive nickel-based electrodes are used in industrial alkaline water electrolysis. We show that an iron substrate can be rendered stable and electrocatalytically active for the oxygen evolution reaction by nano-scale surface modification with nickel. The electrocatalytic activity of such a surface-modified iron electrode is comparable to the recently-reported nickel-based catalysts. The electrocatalytic activity is due to a 50-nanometer layer of a high-surface area a-nickel hydroxide on the iron electrode. The nickel modification renders the iron electrode electrically-conductive, prevents dielectric breakdown, and thus endows anodic stability. The electrocatalytic activity is unchanged even after 1000 hours of continuous operation. The temperature of preparation is critical, as excessive dehydration of the hydroxide layer results in nickel ferrite formation and a drastic reduction in electrocatalytic activity. We report significant insight into the surface chemical composition and structure of the catalyst layer by X-ray Absorption Spectroscopy, Photoelectron Spectroscopy, and Transmission Electron Microscopy. Electrochemical kinetics analysis suggests that surface hydroxo-intermediates react with the hydroxide ions from the solution to evolve oxygen. Furthermore, the surface-modified iron substrates present an opportunity for improving the performance and reducing the cost of alkaline water electrolysis systems. (C) The Author(s) 2018. Published by ECS.},
doi = {10.1149/2.1371805jes},
journal = {Journal of the Electrochemical Society},
number = 5,
volume = 165,
place = {United States},
year = {2018},
month = {4}
}
Web of Science
Works referenced in this record:
ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005
- Ravel, B.; Newville, M.
- Journal of Synchrotron Radiation, Vol. 12, Issue 4
Surface Interrogation Scanning Electrochemical Microscopy of Ni 1– x Fe x OOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the “fast” Iron Sites
journal, December 2015
- Ahn, Hyun S.; Bard, Allen J.
- Journal of the American Chemical Society, Vol. 138, Issue 1
Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction
journal, January 2016
- Swesi, A. T.; Masud, J.; Nath, M.
- Energy & Environmental Science, Vol. 9, Issue 5
A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
journal, November 2014
- Gong, Ming; Dai, Hongjie
- Nano Research, Vol. 8, Issue 1
A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation
journal, October 2010
- Gorlin, Yelena; Jaramillo, Thomas F.
- Journal of the American Chemical Society, Vol. 132, Issue 39, p. 13612-13614
The Activity Coefficient of Potassium Hydroxide in Potassium Chloride Solutions
journal, March 1925
- Harned, Herbert S.
- Journal of the American Chemical Society, Vol. 47, Issue 3
Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides
journal, January 1982
- Oliva, P.; Leonardi, J.; Laurent, J. F.
- Journal of Power Sources, Vol. 8, Issue 2
The analysis of electrode impedances complicated by the presence of a constant phase element
journal, September 1984
- Brug, G. J.; van den Eeden, A. L. G.; Sluyters-Rehbach, M.
- Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 176, Issue 1-2
SrNb 0.1 Co 0.7 Fe 0.2 O 3− δ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution
journal, February 2015
- Zhu, Yinlong; Zhou, Wei; Chen, Zhi-Gang
- Angewandte Chemie International Edition, Vol. 54, Issue 13
Bi-Functional Oxygen Electrodes - Challenges and Prospects
journal, January 2015
- Narayan, S. R.; Manohar, A.; Mukerjee, S.
- Interface magazine, Vol. 24, Issue 2
Mechanism of oxygen evolution on perovskites
journal, July 1983
- Bockris, John O'M.; Otagawa, Takaaki
- The Journal of Physical Chemistry, Vol. 87, Issue 15
The preparation and behaviour of magnetite anodes
journal, July 1978
- Hayes, M.; Kuhn, A. T.
- Journal of Applied Electrochemistry, Vol. 8, Issue 4
Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution
journal, September 2013
- Grimaud, Alexis; May, Kevin J.; Carlton, Christopher E.
- Nature Communications, Vol. 4, Issue 1
Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel
journal, July 2013
- Smith, Rodney D. L.; Prévot, Mathieu S.; Fagan, Randal D.
- Journal of the American Chemical Society, Vol. 135, Issue 31
Electrochemical Deposition of Spinel-Type Cobalt Oxide from Alkaline Solution of Co[sup 2+] with Glycine
journal, January 2002
- Nakaoka, K.; Nakayama, M.; Ogura, K.
- Journal of The Electrochemical Society, Vol. 149, Issue 3
Efficient Electro-Oxidation of Water near Its Reversible Potential by a Mesoporous IrO x Nanoparticle Film
journal, July 2009
- Nakagawa, Takaaki; Beasley, Christopher A.; Murray, Royce W.
- The Journal of Physical Chemistry C, Vol. 113, Issue 30
Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction
journal, April 2015
- Malkhandi, S.; Trinh, P.; Manohar, Aswin K.
- The Journal of Physical Chemistry C, Vol. 119, Issue 15
An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation
journal, May 2013
- Gong, Ming; Li, Yanguang; Wang, Hailiang
- Journal of the American Chemical Society, Vol. 135, Issue 23
The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis
journal, June 2010
- Dau, Holger; Limberg, Christian; Reier, Tobias
- ChemCatChem, Vol. 2, Issue 7
Electrochemical study of the promoting effect of Fe on oxygen evolution at thin ‘NiFe–Bi’ films and the inhibiting effect of Al in borate electrolyte
journal, January 2017
- Fayad, Remi; Dhainy, Jihan; Ghandour, Hiba
- Catalysis Science & Technology, Vol. 7, Issue 17
Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H 2 SO 4
journal, January 2017
- Moreno-Hernandez, Ivan A.; MacFarland, Clara A.; Read, Carlos G.
- Energy & Environmental Science, Vol. 10, Issue 10
Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism
journal, March 2015
- Burke, Michaela S.; Kast, Matthew G.; Trotochaud, Lena
- Journal of the American Chemical Society, Vol. 137, Issue 10
In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008
- Kanan, M. W.; Nocera, D. G.
- Science, Vol. 321, Issue 5892, p. 1072-1075
Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst
journal, January 2017
- Pei, Zengxia; Li, Hongfei; Huang, Yan
- Energy & Environmental Science, Vol. 10, Issue 3
Water-oxidation catalysis by manganese in a geochemical-like cycle
journal, May 2011
- Hocking, Rosalie K.; Brimblecombe, Robin; Chang, Lan-Yun
- Nature Chemistry, Vol. 3, Issue 6
Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction
journal, December 2015
- Bates, Michael K.; Jia, Qingying; Doan, Huong
- ACS Catalysis, Vol. 6, Issue 1
A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011
- Suntivich, J.; May, K. J.; Gasteiger, H. A.
- Science, Vol. 334, Issue 6061
A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH) 6 nanocubes
journal, January 2016
- Song, Fang; Schenk, Kurt; Hu, Xile
- Energy & Environmental Science, Vol. 9, Issue 2
Electrolysis of water on (oxidized) metal surfaces
journal, December 2005
- Rossmeisl, J.; Logadottir, A.; Nørskov, J. K.
- Chemical Physics, Vol. 319, Issue 1-3, p. 178-184
New interpretations of XPS spectra of nickel metal and oxides
journal, May 2006
- Grosvenor, Andrew P.; Biesinger, Mark C.; Smart, Roger St. C.
- Surface Science, Vol. 600, Issue 9
X-Ray Absorption Spectroscopy Study of the Local Structure of Heavy Metal Ions Incorporated into Electrodeposited Nickel Oxide Films
journal, January 1999
- Balasubramanian, M.
- Journal of The Electrochemical Society, Vol. 146, Issue 2
Mixed spinel structure in nanocrystalline
journal, April 2001
- Chinnasamy, C. N.; Narayanasamy, A.; Ponpandian, N.
- Physical Review B, Vol. 63, Issue 18
Electrocatalysis: understanding the success of DSA®
journal, May 2000
- Trasatti, S.
- Electrochimica Acta, Vol. 45, Issue 15-16
Enhancing Bi-functional Electrocatalytic Activity of Perovskite by Temperature Shock: A Case Study of LaNiO 3−δ
journal, August 2013
- Zhou, Wei; Sunarso, Jaka
- The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
Analysis of X-ray Absorption Spectra of Some Nickel Oxycompounds Using Theoretical Standards
journal, January 1998
- Mansour, A. N.; Melendres, C. A.
- The Journal of Physical Chemistry A, Vol. 102, Issue 1
An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013
- Louie, Mary W.; Bell, Alexis T.
- Journal of the American Chemical Society, Vol. 135, Issue 33
Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities
journal, March 2015
- Lu, Xunyu; Zhao, Chuan
- Nature Communications, Vol. 6, Issue 1
Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis
journal, May 2015
- Jin, Kyoungsuk; Chu, Arim; Park, Jimin
- Scientific Reports, Vol. 5, Issue 1
Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
journal, July 2014
- Song, Fang; Hu, Xile
- Nature Communications, Vol. 5, Issue 1
Dynamic potential–pH diagrams application to electrocatalysts for wateroxidation
journal, January 2012
- Minguzzi, Alessandro; Fan, Fu-Ren F.; Vertova, Alberto
- Chem. Sci., Vol. 3, Issue 1
A layered Na 1−x Ni y Fe 1−y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting
journal, January 2017
- Weng, Baicheng; Xu, Fenghua; Wang, Changlei
- Energy & Environmental Science, Vol. 10, Issue 1
Oxygen evolution on aged IrO x /Ti electrodes in alkaline solutions
journal, December 2006
- Guerrini, E.; Chen, H.; Trasatti, S.
- Journal of Solid State Electrochemistry, Vol. 11, Issue 7
Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis
journal, January 2014
- Haber, Joel A.; Cai, Yun; Jung, Suho
- Energy Environ. Sci., Vol. 7, Issue 2
Electrocatalytic Properties of Nanocrystalline Calcium-Doped Lanthanum Cobalt Oxide for Bifunctional Oxygen Electrodes
journal, March 2012
- Malkhandi, S.; Yang, B.; Manohar, A. K.
- The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013
- McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
- Journal of the American Chemical Society, Vol. 135, Issue 45
Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts
journal, April 2016
- Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge
- Journal of the American Chemical Society, Vol. 138, Issue 17
Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
journal, January 2015
- Friebel, Daniel; Louie, Mary W.; Bajdich, Michal
- Journal of the American Chemical Society, Vol. 137, Issue 3
Thermal behavior of oxides and hydroxides of iron and nickel
journal, June 1989
- Gadalla, Ahmed M.; Livingston, Terry Wayne
- Thermochimica Acta, Vol. 145
Alkaline Water Electrolysis Anode Materials
journal, January 1985
- Hall, D. E.
- Journal of The Electrochemical Society, Vol. 132, Issue 2
Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014
- Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
- Journal of the American Chemical Society, Vol. 136, Issue 18
Role of Catalyst Preparation on the Electrocatalytic Activity of Ni 1– x Fe x OOH for the Oxygen Evolution Reaction
journal, August 2015
- Klaus, Shannon; Louie, Mary W.; Trotochaud, Lena
- The Journal of Physical Chemistry C, Vol. 119, Issue 32
Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
journal, January 2015
- Hong, Wesley T.; Risch, Marcel; Stoerzinger, Kelsey A.
- Energy & Environmental Science, Vol. 8, Issue 5
Synthesis of nickel ferrite nanoparticles by sol-gel method
journal, May 2001
- Chen, Dong-Hwang; He, Xin-Rong
- Materials Research Bulletin, Vol. 36, Issue 7-8
A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
journal, April 2015
- Zhang, Jintao; Zhao, Zhenghang; Xia, Zhenhai
- Nature Nanotechnology, Vol. 10, Issue 5
A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe 2 O 4 (M = Mn, Co, Ni)
journal, May 2009
- Carta, D.; Casula, M. F.; Falqui, A.
- The Journal of Physical Chemistry C, Vol. 113, Issue 20
Kinetics of oxygen evolution on Pb and Pb-Ag anodes during zinc electrowinning
journal, May 1996
- Rerolle, C.; Wiart, R.
- Electrochimica Acta, Vol. 41, Issue 7-8
Electrochemical Synthesis of Spinel Type ZnCo 2 O 4 Electrodes for Use as Oxygen Evolution Reaction Catalysts
journal, June 2014
- Kim, Tae Woo; Woo, Myong A.; Regis, Morrisa
- The Journal of Physical Chemistry Letters, Vol. 5, Issue 13
SrNb 0.1 Co 0.7 Fe 0.2 O 3− δ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution
journal, February 2015
- Zhu, Yinlong; Zhou, Wei; Chen, Zhi-Gang
- Angewandte Chemie, Vol. 127, Issue 13
Works referencing / citing this record:
Electrochemical Cathodic Treatment of Mild Steel as a Host for Ni(OH) 2 Catalyst for Oxygen Evolution Reaction in Alkaline Media
journal, July 2019
- Maruthapandian, Viruthasalam; Muthurasu, Alagan; Dekshinamoorthi, Amuthan
- ChemElectroChem, Vol. 6, Issue 17
Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method
journal, January 2018
- Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.
- Journal of The Electrochemical Society, Vol. 165, Issue 10