skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis

Abstract

Iron is unstable as an oxygen evolution electrode in alkaline media. Thus, relatively expensive nickel-based electrodes are used in industrial alkaline water electrolysis. We show that an iron substrate can be rendered stable and electrocatalytically active for the oxygen evolution reaction by nano-scale surface modification with nickel. The electrocatalytic activity of such a surface-modified iron electrode is comparable to the recently-reported nickel-based catalysts. The electrocatalytic activity is due to a 50-nanometer layer of a high-surface area a-nickel hydroxide on the iron electrode. The nickel modification renders the iron electrode electrically-conductive, prevents dielectric breakdown, and thus endows anodic stability. The electrocatalytic activity is unchanged even after 1000 hours of continuous operation. The temperature of preparation is critical, as excessive dehydration of the hydroxide layer results in nickel ferrite formation and a drastic reduction in electrocatalytic activity. We report significant insight into the surface chemical composition and structure of the catalyst layer by X-ray Absorption Spectroscopy, Photoelectron Spectroscopy, and Transmission Electron Microscopy. Electrochemical kinetics analysis suggests that surface hydroxo-intermediates react with the hydroxide ions from the solution to evolve oxygen. Furthermore, the surface-modified iron substrates present an opportunity for improving the performance and reducing the cost of alkaline water electrolysis systems. (C)more » The Author(s) 2018. Published by ECS.« less

Authors:
 [1];  [1];  [1];  [1];  [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Southern California, Los Angeles, CA (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1461347
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 165; Journal Issue: 5; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Electrocatalysis; Electrolysis; Oxygen Evolution

Citation Formats

Mitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., and Narayanan, S. R. An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. United States: N. p., 2018. Web. doi:10.1149/2.1371805jes.
Mitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., & Narayanan, S. R. An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. United States. doi:10.1149/2.1371805jes.
Mitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., and Narayanan, S. R. Sat . "An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis". United States. doi:10.1149/2.1371805jes. https://www.osti.gov/servlets/purl/1461347.
@article{osti_1461347,
title = {An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis},
author = {Mitra, D. and Trinh, P. and Malkhandi, S. and Mecklenburg, M. and Heald, S. M. and Balasubramanian, M. and Narayanan, S. R.},
abstractNote = {Iron is unstable as an oxygen evolution electrode in alkaline media. Thus, relatively expensive nickel-based electrodes are used in industrial alkaline water electrolysis. We show that an iron substrate can be rendered stable and electrocatalytically active for the oxygen evolution reaction by nano-scale surface modification with nickel. The electrocatalytic activity of such a surface-modified iron electrode is comparable to the recently-reported nickel-based catalysts. The electrocatalytic activity is due to a 50-nanometer layer of a high-surface area a-nickel hydroxide on the iron electrode. The nickel modification renders the iron electrode electrically-conductive, prevents dielectric breakdown, and thus endows anodic stability. The electrocatalytic activity is unchanged even after 1000 hours of continuous operation. The temperature of preparation is critical, as excessive dehydration of the hydroxide layer results in nickel ferrite formation and a drastic reduction in electrocatalytic activity. We report significant insight into the surface chemical composition and structure of the catalyst layer by X-ray Absorption Spectroscopy, Photoelectron Spectroscopy, and Transmission Electron Microscopy. Electrochemical kinetics analysis suggests that surface hydroxo-intermediates react with the hydroxide ions from the solution to evolve oxygen. Furthermore, the surface-modified iron substrates present an opportunity for improving the performance and reducing the cost of alkaline water electrolysis systems. (C) The Author(s) 2018. Published by ECS.},
doi = {10.1149/2.1371805jes},
journal = {Journal of the Electrochemical Society},
number = 5,
volume = 165,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Surface Interrogation Scanning Electrochemical Microscopy of Ni 1– x Fe x OOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the “fast” Iron Sites
journal, December 2015

  • Ahn, Hyun S.; Bard, Allen J.
  • Journal of the American Chemical Society, Vol. 138, Issue 1
  • DOI: 10.1021/jacs.5b10977

Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction
journal, January 2016

  • Swesi, A. T.; Masud, J.; Nath, M.
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C5EE02463C

A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
journal, November 2014


A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation
journal, October 2010

  • Gorlin, Yelena; Jaramillo, Thomas F.
  • Journal of the American Chemical Society, Vol. 132, Issue 39, p. 13612-13614
  • DOI: 10.1021/ja104587v

The Activity Coefficient of Potassium Hydroxide in Potassium Chloride Solutions
journal, March 1925

  • Harned, Herbert S.
  • Journal of the American Chemical Society, Vol. 47, Issue 3
  • DOI: 10.1021/ja01680a013

Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides
journal, January 1982


The analysis of electrode impedances complicated by the presence of a constant phase element
journal, September 1984

  • Brug, G. J.; van den Eeden, A. L. G.; Sluyters-Rehbach, M.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 176, Issue 1-2
  • DOI: 10.1016/S0022-0728(84)80324-1

SrNb 0.1 Co 0.7 Fe 0.2 O 3− δ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution
journal, February 2015

  • Zhu, Yinlong; Zhou, Wei; Chen, Zhi-Gang
  • Angewandte Chemie International Edition, Vol. 54, Issue 13
  • DOI: 10.1002/anie.201408998

Bi-Functional Oxygen Electrodes - Challenges and Prospects
journal, January 2015

  • Narayan, S. R.; Manohar, A.; Mukerjee, S.
  • Interface magazine, Vol. 24, Issue 2
  • DOI: 10.1149/2.F06152if

Mechanism of oxygen evolution on perovskites
journal, July 1983

  • Bockris, John O'M.; Otagawa, Takaaki
  • The Journal of Physical Chemistry, Vol. 87, Issue 15
  • DOI: 10.1021/j100238a048

The preparation and behaviour of magnetite anodes
journal, July 1978

  • Hayes, M.; Kuhn, A. T.
  • Journal of Applied Electrochemistry, Vol. 8, Issue 4
  • DOI: 10.1007/BF00612686

Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution
journal, September 2013

  • Grimaud, Alexis; May, Kevin J.; Carlton, Christopher E.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3439

Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel
journal, July 2013

  • Smith, Rodney D. L.; Prévot, Mathieu S.; Fagan, Randal D.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja403102j

Electrochemical Deposition of Spinel-Type Cobalt Oxide from Alkaline Solution of Co[sup 2+] with Glycine
journal, January 2002

  • Nakaoka, K.; Nakayama, M.; Ogura, K.
  • Journal of The Electrochemical Society, Vol. 149, Issue 3
  • DOI: 10.1149/1.1446871

Efficient Electro-Oxidation of Water near Its Reversible Potential by a Mesoporous IrO x Nanoparticle Film
journal, July 2009

  • Nakagawa, Takaaki; Beasley, Christopher A.; Murray, Royce W.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 30
  • DOI: 10.1021/jp9060076

Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction
journal, April 2015

  • Malkhandi, S.; Trinh, P.; Manohar, Aswin K.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 15
  • DOI: 10.1021/jp512722x

An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation
journal, May 2013

  • Gong, Ming; Li, Yanguang; Wang, Hailiang
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja4027715

The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis
journal, June 2010


Electrochemical study of the promoting effect of Fe on oxygen evolution at thin ‘NiFe–Bi’ films and the inhibiting effect of Al in borate electrolyte
journal, January 2017

  • Fayad, Remi; Dhainy, Jihan; Ghandour, Hiba
  • Catalysis Science & Technology, Vol. 7, Issue 17
  • DOI: 10.1039/C7CY00873B

Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H 2 SO 4
journal, January 2017

  • Moreno-Hernandez, Ivan A.; MacFarland, Clara A.; Read, Carlos G.
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01486D

Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism
journal, March 2015

  • Burke, Michaela S.; Kast, Matthew G.; Trotochaud, Lena
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/jacs.5b00281

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst
journal, January 2017

  • Pei, Zengxia; Li, Hongfei; Huang, Yan
  • Energy & Environmental Science, Vol. 10, Issue 3
  • DOI: 10.1039/C6EE03265F

Water-oxidation catalysis by manganese in a geochemical-like cycle
journal, May 2011

  • Hocking, Rosalie K.; Brimblecombe, Robin; Chang, Lan-Yun
  • Nature Chemistry, Vol. 3, Issue 6
  • DOI: 10.1038/nchem.1049

Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction
journal, December 2015


A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH) 6 nanocubes
journal, January 2016

  • Song, Fang; Schenk, Kurt; Hu, Xile
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE03453A

Electrolysis of water on (oxidized) metal surfaces
journal, December 2005


New interpretations of XPS spectra of nickel metal and oxides
journal, May 2006

  • Grosvenor, Andrew P.; Biesinger, Mark C.; Smart, Roger St. C.
  • Surface Science, Vol. 600, Issue 9
  • DOI: 10.1016/j.susc.2006.01.041

X-Ray Absorption Spectroscopy Study of the Local Structure of Heavy Metal Ions Incorporated into Electrodeposited Nickel Oxide Films
journal, January 1999

  • Balasubramanian, M.
  • Journal of The Electrochemical Society, Vol. 146, Issue 2
  • DOI: 10.1149/1.1391651

Mixed spinel structure in nanocrystalline NiFe 2 O 4
journal, April 2001


Electrocatalysis: understanding the success of DSA®
journal, May 2000


Enhancing Bi-functional Electrocatalytic Activity of Perovskite by Temperature Shock: A Case Study of LaNiO 3−δ
journal, August 2013

  • Zhou, Wei; Sunarso, Jaka
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401169n

Analysis of X-ray Absorption Spectra of Some Nickel Oxycompounds Using Theoretical Standards
journal, January 1998

  • Mansour, A. N.; Melendres, C. A.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 1
  • DOI: 10.1021/jp9619853

An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013

  • Louie, Mary W.; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja405351s

Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis
journal, May 2015

  • Jin, Kyoungsuk; Chu, Arim; Park, Jimin
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10279

Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
journal, July 2014


Dynamic potential–pH diagrams application to electrocatalysts for wateroxidation
journal, January 2012

  • Minguzzi, Alessandro; Fan, Fu-Ren F.; Vertova, Alberto
  • Chem. Sci., Vol. 3, Issue 1
  • DOI: 10.1039/C1SC00516B

A layered Na 1−x Ni y Fe 1−y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting
journal, January 2017

  • Weng, Baicheng; Xu, Fenghua; Wang, Changlei
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE03088B

Oxygen evolution on aged IrO x /Ti electrodes in alkaline solutions
journal, December 2006

  • Guerrini, E.; Chen, H.; Trasatti, S.
  • Journal of Solid State Electrochemistry, Vol. 11, Issue 7
  • DOI: 10.1007/s10008-006-0238-4

Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis
journal, January 2014

  • Haber, Joel A.; Cai, Yun; Jung, Suho
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE43683G

Electrocatalytic Properties of Nanocrystalline Calcium-Doped Lanthanum Cobalt Oxide for Bifunctional Oxygen Electrodes
journal, March 2012

  • Malkhandi, S.; Yang, B.; Manohar, A. K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300181a

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts
journal, April 2016

  • Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b00332

Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
journal, January 2015

  • Friebel, Daniel; Louie, Mary W.; Bajdich, Michal
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja511559d

Thermal behavior of oxides and hydroxides of iron and nickel
journal, June 1989


Alkaline Water Electrolysis Anode Materials
journal, January 1985

  • Hall, D. E.
  • Journal of The Electrochemical Society, Vol. 132, Issue 2
  • DOI: 10.1149/1.2113856

Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014

  • Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja502379c

Role of Catalyst Preparation on the Electrocatalytic Activity of Ni 1– x Fe x OOH for the Oxygen Evolution Reaction
journal, August 2015

  • Klaus, Shannon; Louie, Mary W.; Trotochaud, Lena
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b04776

Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
journal, January 2015

  • Hong, Wesley T.; Risch, Marcel; Stoerzinger, Kelsey A.
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C4EE03869J

Synthesis of nickel ferrite nanoparticles by sol-gel method
journal, May 2001


A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
journal, April 2015

  • Zhang, Jintao; Zhao, Zhenghang; Xia, Zhenhai
  • Nature Nanotechnology, Vol. 10, Issue 5
  • DOI: 10.1038/nnano.2015.48

A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe 2 O 4 (M = Mn, Co, Ni)
journal, May 2009

  • Carta, D.; Casula, M. F.; Falqui, A.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 20
  • DOI: 10.1021/jp901077c

Kinetics of oxygen evolution on Pb and Pb-Ag anodes during zinc electrowinning
journal, May 1996


Electrochemical Synthesis of Spinel Type ZnCo 2 O 4 Electrodes for Use as Oxygen Evolution Reaction Catalysts
journal, June 2014

  • Kim, Tae Woo; Woo, Myong A.; Regis, Morrisa
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 13
  • DOI: 10.1021/jz501077u