DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oligonucleotide–Peptide Complexes: Phase Control by Hybridization

Abstract

When oppositely charged polymers are mixed, counterion release drives phase separation; understanding this process is a key unsolved problem in polymer science and biophysical chemistry, particularly for nucleic acids, polyanions whose biological functions are intimately related to their high charge density. In the cell, complexation by basic proteins condenses DNA into chromatin, and membraneless organelles formed by liquid-liquid phase separation of RNA and proteins perform vital functions and have been linked to disease. Electrostatic interactions are also the primary method used for assembly of nanoparticles to deliver therapeutic nucleic acids into cells. This paper describes complexation experiments with oligonucleotides and cationic peptides spanning a wide range of polymer lengths, concentrations, and structures, including RNA and methylphosphonate backbones. We find that the phase of the complexes is controlled by the hybridization state of the nucleic acid, with double-stranded nucleic acids forming solid precipitates while single-stranded oligonucleotides form liquid coacervates, apparently due to their lower charge density. Adding salt "melts" precipitates into coacervates, and oligonucleotides in coacervates remain competent for sequence-specific hybridization and phase change, suggesting the possibility of environmentally responsive complexes and nanoparticles for therapeutic or sensing applications.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1];  [3];  [1];  [4];  [5]
  1. Univ. of Chicago, IL (United States). Inst. for Molecular Engineering
  2. Univ. of Chicago, IL (United States). Dept. of Chemistry
  3. Univ. of Central Florida, Orlando, FL (United States). Dept. of Materials Science and Engineering
  4. Univ. of Puerto Rico at Rio Piedras, San Juan, PR (United States). Dept. of Biological Sciences
  5. Univ. of Chicago, IL (United States). Inst. for Molecular Engineering; Argonne National Lab. (ANL), Argonne, IL (United States). Inst. for Molecular Engineering
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1461292
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 5; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Vieregg, Jeffrey R., Lueckheide, Michael, Marciel, Amanda B., Leon, Lorraine, Bologna, Alex J., Rivera, Josean Reyes, and Tirrell, Matthew V. Oligonucleotide–Peptide Complexes: Phase Control by Hybridization. United States: N. p., 2018. Web. doi:10.1021/jacs.7b03567.
Vieregg, Jeffrey R., Lueckheide, Michael, Marciel, Amanda B., Leon, Lorraine, Bologna, Alex J., Rivera, Josean Reyes, & Tirrell, Matthew V. Oligonucleotide–Peptide Complexes: Phase Control by Hybridization. United States. https://doi.org/10.1021/jacs.7b03567
Vieregg, Jeffrey R., Lueckheide, Michael, Marciel, Amanda B., Leon, Lorraine, Bologna, Alex J., Rivera, Josean Reyes, and Tirrell, Matthew V. Tue . "Oligonucleotide–Peptide Complexes: Phase Control by Hybridization". United States. https://doi.org/10.1021/jacs.7b03567. https://www.osti.gov/servlets/purl/1461292.
@article{osti_1461292,
title = {Oligonucleotide–Peptide Complexes: Phase Control by Hybridization},
author = {Vieregg, Jeffrey R. and Lueckheide, Michael and Marciel, Amanda B. and Leon, Lorraine and Bologna, Alex J. and Rivera, Josean Reyes and Tirrell, Matthew V.},
abstractNote = {When oppositely charged polymers are mixed, counterion release drives phase separation; understanding this process is a key unsolved problem in polymer science and biophysical chemistry, particularly for nucleic acids, polyanions whose biological functions are intimately related to their high charge density. In the cell, complexation by basic proteins condenses DNA into chromatin, and membraneless organelles formed by liquid-liquid phase separation of RNA and proteins perform vital functions and have been linked to disease. Electrostatic interactions are also the primary method used for assembly of nanoparticles to deliver therapeutic nucleic acids into cells. This paper describes complexation experiments with oligonucleotides and cationic peptides spanning a wide range of polymer lengths, concentrations, and structures, including RNA and methylphosphonate backbones. We find that the phase of the complexes is controlled by the hybridization state of the nucleic acid, with double-stranded nucleic acids forming solid precipitates while single-stranded oligonucleotides form liquid coacervates, apparently due to their lower charge density. Adding salt "melts" precipitates into coacervates, and oligonucleotides in coacervates remain competent for sequence-specific hybridization and phase change, suggesting the possibility of environmentally responsive complexes and nanoparticles for therapeutic or sensing applications.},
doi = {10.1021/jacs.7b03567},
journal = {Journal of the American Chemical Society},
number = 5,
volume = 140,
place = {United States},
year = {Tue Jan 09 00:00:00 EST 2018},
month = {Tue Jan 09 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 120 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Oligonucleotides and poly(L)lysine (pLys) form phase-separated complexes upon mixing. A) 22 nt single-stranded DNA and 50 aa pLys form liquid droplets when mixed at 2.5 mM amine and phosphate concentration. 22 bp double-stranded DNA and 50 aa pLys form solid precipitates when mixed under the same conditions. Imagesmore » taken 4 hours after mixing. B) Quantification of non-complexed DNA shows that the complexes appear nearly neutral (black line) regardless of bulk charge ratio and polymer length: [N]/[P] ≡ [pLys amines] / [DNA phosphates]. Total charge ([amine] + [phosphate]) is fixed at 5 mM. Solution DNA values are normalized to 1 at [pLys] = 0 and 0 at [DNA] = 0. C) Phase separation is consistent across a wide range of polyanion : polycation concentration ratios ([N]/[P] = 1 shown in Panel A).« less

Save / Share:

Works referenced in this record:

DNA condensation
journal, June 1996


Condensed DNA: Condensing the concepts
journal, May 2011


Liquid phase condensation in cell physiology and disease
journal, September 2017


Biomolecular condensates: organizers of cellular biochemistry
journal, February 2017

  • Banani, Salman F.; Lee, Hyun O.; Hyman, Anthony A.
  • Nature Reviews Molecular Cell Biology, Vol. 18, Issue 5
  • DOI: 10.1038/nrm.2017.7

A Phase Separation Model for Transcriptional Control
journal, March 2017


RNA phase transitions in repeat expansion disorders
journal, May 2017


Polynucleotides in cellular mimics: Coacervates and lipid vesicles
journal, December 2016


Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond)
journal, April 2015

  • Lächelt, Ulrich; Wagner, Ernst
  • Chemical Reviews, Vol. 115, Issue 19
  • DOI: 10.1021/cr5006793

Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation
journal, May 2017

  • Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15654

Complex coacervate core micelles
journal, March 2009

  • Voets, Ilja K.; de Keizer, Arie; Cohen Stuart, Martien A.
  • Advances in Colloid and Interface Science, Vol. 147-148
  • DOI: 10.1016/j.cis.2008.09.012

Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses
journal, January 2012

  • Miyata, Kanjiro; Nishiyama, Nobuhiro; Kataoka, Kazunori
  • Chem. Soc. Rev., Vol. 41, Issue 7
  • DOI: 10.1039/C1CS15258K

Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers
journal, July 2012


Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers
journal, January 2016

  • Hayashi, Kotaro; Chaya, Hiroyuki; Fukushima, Shigeto
  • Macromolecular Rapid Communications, Vol. 37, Issue 6
  • DOI: 10.1002/marc.201500661

Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA
journal, February 2016

  • Kwok, Albert; McCarthy, David; Hart, Stephen L.
  • Chemical Biology & Drug Design, Vol. 87, Issue 5
  • DOI: 10.1111/cbdd.12709

Enhanced silencing and stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds
journal, January 2014


Thermodynamic extent of counterion release upon binding oligolysines to single-stranded nucleic acids.
journal, April 1990

  • Mascotti, D. P.; Lohman, T. M.
  • Proceedings of the National Academy of Sciences, Vol. 87, Issue 8
  • DOI: 10.1073/pnas.87.8.3142

Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine.
journal, November 1975


Comb-Type Polycations Effectively Stabilize DNA Triplex
journal, January 1997

  • Maruyama, Atsushi; Katoh, Maiko; Ishihara, Tsutomu
  • Bioconjugate Chemistry, Vol. 8, Issue 1
  • DOI: 10.1021/bc960071g

Coulombic free energy and salt ion association per phosphate of all-atom models of DNA oligomer: dependence on oligomer size
journal, January 2012

  • Shkel, Irina A.; Record, M. Thomas
  • Soft Matter, Vol. 8, Issue 36
  • DOI: 10.1039/c2sm25607j

Double-Stranded RNA Resists Condensation
journal, March 2011


Spermine Condenses DNA, but Not RNA Duplexes
journal, January 2017


Complex coacervation of proteins and anionic polysaccharides
journal, December 2004

  • de Kruif, Cornelus G.; Weinbreck, Fanny; de Vries, Renko
  • Current Opinion in Colloid & Interface Science, Vol. 9, Issue 5
  • DOI: 10.1016/j.cocis.2004.09.006

Thermodynamic Characterization of Polypeptide Complex Coacervation
journal, October 2012

  • Priftis, Dimitrios; Laugel, Nicolas; Tirrell, Matthew
  • Langmuir, Vol. 28, Issue 45
  • DOI: 10.1021/la302729r

Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic
journal, January 2016

  • Fu, Jingcheng; Schlenoff, Joseph B.
  • Journal of the American Chemical Society, Vol. 138, Issue 3
  • DOI: 10.1021/jacs.5b11878

Microencapsulation
journal, July 2004


Complexation of Oppositely Charged Polyelectrolytes:  Effect of Ion Pair Formation
journal, November 2004

  • Kudlay, Alexander; Ermoshkin, Alexander V.; Olvera de la Cruz, Monica
  • Macromolecules, Vol. 37, Issue 24
  • DOI: 10.1021/ma048519t

Binodal Compositions of Polyelectrolyte Complexes
journal, August 2010

  • Spruijt, Evan; Westphal, Adrie H.; Borst, Jan Willem
  • Macromolecules, Vol. 43, Issue 15
  • DOI: 10.1021/ma101031t

Chirality-selected phase behaviour in ionic polypeptide complexes
journal, January 2015

  • Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7052

The Thermodynamics of DNA Structural Motifs
journal, June 2004


Measurement of the Effect of Monovalent Cations on RNA Hairpin Stability
journal, November 2007

  • Vieregg, Jeffrey; Cheng, Wei; Bustamante, Carlos
  • Journal of the American Chemical Society, Vol. 129, Issue 48
  • DOI: 10.1021/ja074809o

Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)−Poly(allylamine) Solutions
journal, March 2010

  • Chollakup, Rungsima; Smitthipong, Wirasak; Eisenbach, Claus D.
  • Macromolecules, Vol. 43, Issue 5
  • DOI: 10.1021/ma902144k

Phase behaviour and complex coacervation of aqueous polypeptide solutions
journal, January 2012

  • Priftis, Dimitrios; Tirrell, Matthew
  • Soft Matter, Vol. 8, Issue 36
  • DOI: 10.1039/C2SM25604E

Deoxyribonucleic acid-polylysine complexes. Structure and nucleotide specificity
journal, August 1969

  • Shapiro, Jewel T.; Leng, Marc; Felsenfeld, Gary
  • Biochemistry, Vol. 8, Issue 8
  • DOI: 10.1021/bi00836a014

Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles
journal, December 2015

  • Aumiller, William M.; Keating, Christine D.
  • Nature Chemistry, Vol. 8, Issue 2
  • DOI: 10.1038/nchem.2414

RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly
journal, September 2016


Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
journal, February 2016

  • Yin, Yudan; Niu, Lin; Zhu, Xiaocui
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10658

Responsive Polymer Gels:  Double-Stranded versus Single-Stranded DNA
journal, September 2007

  • Costa, Diana; Miguel, M. Graça; Lindman, Björn
  • The Journal of Physical Chemistry B, Vol. 111, Issue 37
  • DOI: 10.1021/jp0713108

Ion-Pairing Strength in Polyelectrolyte Complexes
journal, January 2017


Origin of the intrinsic rigidity of DNA
journal, July 2004


Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking
journal, February 2014


Proton nuclear magnetic resonance studies on dideoxyribonucleoside methylphosphonates
journal, May 1980

  • Kan, Lou S.; Cheng, Doris M.; Miller, Paul S.
  • Biochemistry, Vol. 19, Issue 10
  • DOI: 10.1021/bi00551a020

Phosphate backbone neutralization increases duplex DNA flexibility: A model for protein binding
journal, April 2002

  • Okonogi, T. M.; Alley, S. C.; Harwood, E. A.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 7
  • DOI: 10.1073/pnas.072067799

The Polyelectrolyte Complex/Coacervate Continuum
journal, April 2014

  • Wang, Qifeng; Schlenoff, Joseph B.
  • Macromolecules, Vol. 47, Issue 9
  • DOI: 10.1021/ma500500q

Phase diagram of solution of oppositely charged polyelectrolytes
journal, July 2005

  • Zhang, Rui; Shklovskii, B. I.
  • Physica A: Statistical Mechanics and its Applications, Vol. 352, Issue 1
  • DOI: 10.1016/j.physa.2004.12.037

Complexation in Asymmetric Solutions of Oppositely Charged Polyelectrolytes:  Phase Diagram
journal, November 2007

  • Oskolkov, Nikolay N.; Potemkin, Igor I.
  • Macromolecules, Vol. 40, Issue 23
  • DOI: 10.1021/ma0709304

DNA Condensed by Protamine: A “Short” or “Long” Polycation Behavior
journal, July 2009

  • Toma, Adriana C.; de Frutos, Marta; Livolant, Françoise
  • Biomacromolecules, Vol. 10, Issue 8
  • DOI: 10.1021/bm900275s

NUPACK: Analysis and design of nucleic acid systems
journal, November 2010

  • Zadeh, Joseph N.; Steenberg, Conrad D.; Bois, Justin S.
  • Journal of Computational Chemistry, Vol. 32, Issue 1
  • DOI: 10.1002/jcc.21596

Works referencing / citing this record:

Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes
journal, January 2019

  • Yavvari, Prabhu Srinivas; Awasthi, Anand Kumar; Sharma, Aashish
  • Journal of Materials Chemistry B, Vol. 7, Issue 13
  • DOI: 10.1039/c8tb02962h

Polyelectrolyte Complexation of Oligonucleotides by Charged Hydrophobic—Neutral Hydrophilic Block Copolymers
journal, January 2019

  • Marras, Alexander E.; Vieregg, Jeffrey R.; Ting, Jeffrey M.
  • Polymers, Vol. 11, Issue 1
  • DOI: 10.3390/polym11010083

Directed Growth of Biomimetic Microcompartments
journal, February 2019

  • Ivanov, Ivan; Lira, Rafael B.; Tang, T. ‐Y. Dora
  • Advanced Biosystems, Vol. 3, Issue 6
  • DOI: 10.1002/adbi.201800314

Mapping the phase behavior of coacervate-driven self-assembly in diblock copolyelectrolytes
journal, January 2019

  • Ong, Gary M. C.; Sing, Charles E.
  • Soft Matter, Vol. 15, Issue 25
  • DOI: 10.1039/c9sm00741e

Dynamic Synthetic Cells Based on Liquid–Liquid Phase Separation
journal, August 2019


Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications
journal, January 2020

  • Chao, Youchuang; Shum, Ho Cheung
  • Chemical Society Reviews, Vol. 49, Issue 1
  • DOI: 10.1039/c9cs00466a

Macro- and Microphase Separated Protein-Polyelectrolyte Complexes: Design Parameters and Current Progress
journal, March 2019


Compartmentalised RNA catalysis in membrane-free coacervate protocells
journal, September 2018

  • Drobot, Björn; Iglesias-Artola, Juan M.; Le Vay, Kristian
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06072-w

Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation
journal, November 2019


Engineering Peptide-Based Polyelectrolyte Complexes with Increased Hydrophobicity
journal, March 2019


Liquid–liquid phase separation in artificial cells
journal, August 2018


Ionically crosslinked polyelectrolyte nanoparticle formation mechanisms: the significance of mixing
journal, January 2019


Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets
journal, September 2019

  • Martin, Nicolas; Tian, Liangfei; Spencer, Dan
  • Angewandte Chemie, Vol. 131, Issue 41
  • DOI: 10.1002/ange.201909228

Fluorescent hybrid nanospheres induced by single-stranded DNA and magnetic carbon quantum dots
journal, January 2019

  • Wang, Ling; Wang, Guangzhen; Wang, Yitong
  • New Journal of Chemistry, Vol. 43, Issue 12
  • DOI: 10.1039/c8nj06157b

Building Reconfigurable Devices Using Complex Liquid–Fluid Interfaces
journal, February 2019


Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets
journal, September 2019

  • Martin, Nicolas; Tian, Liangfei; Spencer, Dan
  • Angewandte Chemie International Edition, Vol. 58, Issue 41
  • DOI: 10.1002/anie.201909228

Condensates of short peptides and ATP for the temporal regulation of cytochrome c activity
journal, January 2019

  • Saha, Baishakhi; Chatterjee, Ayan; Reja, Antara
  • Chemical Communications, Vol. 55, Issue 94
  • DOI: 10.1039/c9cc07358b

Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid-Liquid Phase Separation
journal, November 2019

  • Yuan, Chengqian; Levin, Aviad; Chen, Wei
  • Angewandte Chemie International Edition, Vol. 58, Issue 50
  • DOI: 10.1002/anie.201911782

Rigidity Rules in DNA Droplets: Nucleic Acid Flexibility Affects Model Membraneless Organelles
journal, November 2018


Compartmentalised RNA catalysis in membrane-free coacervate protocells
journal, September 2018

  • Drobot, Björn; Iglesias-Artola, Juan M.; Le Vay, Kristian
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06072-w

Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains
journal, January 2020


Engineering Peptide-Based Polyelectrolyte Complexes with Increased Hydrophobicity
journal, March 2019


Polyelectrolyte Complexation of Oligonucleotides by Charged Hydrophobic—Neutral Hydrophilic Block Copolymers
journal, January 2019

  • Marras, Alexander E.; Vieregg, Jeffrey R.; Ting, Jeffrey M.
  • Polymers, Vol. 11, Issue 1
  • DOI: 10.3390/polym11010083

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.