DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Approaches for Achieving Superlubricity in Two-Dimensional Materials

Abstract

Controlling friction and reducing wear of moving mechanical systems is important in many applications, from nanoscale electromechanical systems to large-scale car engines and wind turbines. Accordingly, multiple efforts are dedicated to design materials and surfaces for efficient friction and wear manipulation. Recent advances in two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, molybdenum disulfide, and other 2D materials opened an era for conformal, atomically thin solid lubricants. However, the process of effectively incorporating 2D films requires a fundamental understanding of the atomistic origins of friction. In this review, we outline basic mechanisms for frictional energy dissipation during sliding of two surfaces against each other, and the procedures for manipulating friction and wear by introducing 2D materials at the tribological interface. Lastly, we highlight recent progress in implementing 2D materials for friction reduction to near-zero values-superlubricity-across scales from nano- up to macroscale contacts.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]
  1. Univ. of North Texas, Denton, TX (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1461198
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 12; Journal Issue: 3; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 2D materials; energy dissipation; friction; graphene; macroscale; nanoscale; sliding interfaces; solid lubricants; superlubricity; wear

Citation Formats

Berman, Diana, Erdemir, Ali, and Sumant, Anirudha V. Approaches for Achieving Superlubricity in Two-Dimensional Materials. United States: N. p., 2018. Web. doi:10.1021/acsnano.7b09046.
Berman, Diana, Erdemir, Ali, & Sumant, Anirudha V. Approaches for Achieving Superlubricity in Two-Dimensional Materials. United States. https://doi.org/10.1021/acsnano.7b09046
Berman, Diana, Erdemir, Ali, and Sumant, Anirudha V. Fri . "Approaches for Achieving Superlubricity in Two-Dimensional Materials". United States. https://doi.org/10.1021/acsnano.7b09046. https://www.osti.gov/servlets/purl/1461198.
@article{osti_1461198,
title = {Approaches for Achieving Superlubricity in Two-Dimensional Materials},
author = {Berman, Diana and Erdemir, Ali and Sumant, Anirudha V.},
abstractNote = {Controlling friction and reducing wear of moving mechanical systems is important in many applications, from nanoscale electromechanical systems to large-scale car engines and wind turbines. Accordingly, multiple efforts are dedicated to design materials and surfaces for efficient friction and wear manipulation. Recent advances in two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, molybdenum disulfide, and other 2D materials opened an era for conformal, atomically thin solid lubricants. However, the process of effectively incorporating 2D films requires a fundamental understanding of the atomistic origins of friction. In this review, we outline basic mechanisms for frictional energy dissipation during sliding of two surfaces against each other, and the procedures for manipulating friction and wear by introducing 2D materials at the tribological interface. Lastly, we highlight recent progress in implementing 2D materials for friction reduction to near-zero values-superlubricity-across scales from nano- up to macroscale contacts.},
doi = {10.1021/acsnano.7b09046},
journal = {ACS Nano},
number = 3,
volume = 12,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 311 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Representative schematics of possible mechanisms for energy dissipation during sliding: (a) wear, (b) molecular deformation, (c) thermal effect, (d) electronic effect, (e) bonding, (f) phonons, (g) environment/chemistry, and (h) structural effect. All of these mechanisms are discussed further in this paper.

Save / Share:

Works referenced in this record:

Global energy consumption due to friction in passenger cars
journal, March 2012


Atomistics of superlubricity
journal, June 2014


Experimental advances in superlubricity
journal, June 2014


Dynamics of friction: superlubric state
journal, March 1993


Superlubricity: a state of vanishing friction
journal, July 2003


Superlubricity of molybdenum disulphide
journal, October 1993


Achieving superlubricity in DLC films by controlling bulk, surface, and tribochemistry
journal, June 2014


Synthesis of diamondlike carbon films with superlow friction and wear properties
journal, July 2000

  • Erdemir, A.; Eryilmaz, O. L.; Fenske, G.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 18, Issue 4
  • DOI: 10.1116/1.582459

Friction Models and Friction Compensation
journal, January 1998


A new model for control of systems with friction
journal, March 1995

  • Canudas de Wit, C.; Olsson, H.; Astrom, K. J.
  • IEEE Transactions on Automatic Control, Vol. 40, Issue 3
  • DOI: 10.1109/9.376053

Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction
journal, April 1993

  • Yoshizawa, Hisae; Chen, You Lung; Israelachvili, Jacob
  • The Journal of Physical Chemistry, Vol. 97, Issue 16
  • DOI: 10.1021/j100118a033

Fundamental Aspects of Energy Dissipation in Friction
journal, September 2013

  • Park, Jeong Young; Salmeron, Miquel
  • Chemical Reviews, Vol. 114, Issue 1
  • DOI: 10.1021/cr200431y

Surface science and the atomic-scale origins of friction: what once was old is new again
journal, March 2002


Atomic-Scale Origins of Friction
journal, January 1996


A roadmap for graphene
journal, October 2012

  • Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.
  • Nature, Vol. 490, Issue 7419
  • DOI: 10.1038/nature11458

Elastic Properties of Freely Suspended MoS 2 Nanosheets
journal, January 2012

  • Castellanos-Gomez, Andres; Poot, Menno; Steele, Gary A.
  • Advanced Materials, Vol. 24, Issue 6
  • DOI: 10.1002/adma.201103965

Single-layer MoS2
journal, April 1986


Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition
journal, October 2010

  • Shi, Yumeng; Hamsen, Christoph; Jia, Xiaoting
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1023707

Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers
journal, August 2010

  • Song, Li; Ci, Lijie; Lu, Hao
  • Nano Letters, Vol. 10, Issue 8, p. 3209-3215
  • DOI: 10.1021/nl1022139

Two-dimensional atomic crystals
journal, July 2005

  • Novoselov, K. S.; Jiang, D.; Schedin, F.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30, p. 10451-10453
  • DOI: 10.1073/pnas.0502848102

Graphene: a new emerging lubricant
journal, January 2014


2D-nanomaterials for controlling friction and wear at interfaces
journal, June 2015


Model experiments of superlubricity of graphite
journal, February 2005

  • Dienwiebel, Martin; Pradeep, Namboodiri; Verhoeven, Gertjan S.
  • Surface Science, Vol. 576, Issue 1-3
  • DOI: 10.1016/j.susc.2004.12.011

Superlubricity of Graphite
journal, March 2004

  • Dienwiebel, Martin; Verhoeven, Gertjan S.; Pradeep, Namboodiri
  • Physical Review Letters, Vol. 92, Issue 12, Article No. 126101
  • DOI: 10.1103/PhysRevLett.92.126101

Observation of Microscale Superlubricity in Graphite
journal, May 2012


Colloquium : Modeling friction: From nanoscale to mesoscale
journal, April 2013

  • Vanossi, Andrea; Manini, Nicola; Urbakh, Michael
  • Reviews of Modern Physics, Vol. 85, Issue 2
  • DOI: 10.1103/RevModPhys.85.529

Graphene: Status and Prospects
journal, June 2009


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

2D materials: to graphene and beyond
journal, January 2011

  • Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio
  • Nanoscale, Vol. 3, Issue 1
  • DOI: 10.1039/C0NR00323A

Interacting and coalescing Hertzian asperities: A new multiasperity contact model
journal, March 2012


Elastic Finite Element Analysis of Multi-Asperity Contacts
journal, October 1992

  • Komvopoulos, K.; Choi, D. -H.
  • Journal of Tribology, Vol. 114, Issue 4
  • DOI: 10.1115/1.2920955

The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2
journal, April 2014


Self-Assembled Graphene Film as Low Friction Solid Lubricant in Macroscale Contact
journal, June 2017

  • Wu, Pu; Li, Xinming; Zhang, Chenhui
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 25
  • DOI: 10.1021/acsami.7b04599

Few layer graphene to reduce wear and friction on sliding steel surfaces
journal, April 2013


Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen
journal, August 2013


Graphene as a protective coating and superior lubricant for electrical contacts
journal, December 2014

  • Berman, Diana; Erdemir, Ali; Sumant, Anirudha V.
  • Applied Physics Letters, Vol. 105, Issue 23
  • DOI: 10.1063/1.4903933

Wear evolution of monolayer graphene at the macroscale
journal, May 2017


Friction and Molecular Deformation in the Tensile Regime
journal, February 1999


Frictional Characteristics of Atomically Thin Sheets
journal, April 2010


Effect of elastic deformation on frictional properties of few-layer graphene
journal, January 2012


Nanoscale Interfacial Friction and Adhesion on Supported versus Suspended Monolayer and Multilayer Graphene
journal, December 2012

  • Deng, Zhao; Klimov, Nikolai N.; Solares, Santiago D.
  • Langmuir, Vol. 29, Issue 1
  • DOI: 10.1021/la304079a

Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale
journal, October 2012

  • Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang
  • Nature Materials, Vol. 11, Issue 12
  • DOI: 10.1038/nmat3452

Interaction Potential and Hopping Dynamics Governing Sliding Friction
journal, August 2003


Effects of thermal rippling on the frictional properties of free-standing graphene
journal, January 2015


Superconductivity-Dependent Sliding Friction
journal, February 1998


Ab Initio Study of the Friction Mechanism of Fluorographene and Graphane
journal, June 2013

  • Wang, Lin-Feng; Ma, Tian-Bao; Hu, Yuan-Zhong
  • The Journal of Physical Chemistry C, Vol. 117, Issue 24
  • DOI: 10.1021/jp401097a

Theoretical Study of Superlow Friction Between Two Single-Side Hydrogenated Graphene Sheets
journal, August 2012


Charge Distribution View: Large Difference in Friction Performance Between Graphene and Hydrogenated Graphene Systems
journal, July 2014


The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene
journal, January 2015

  • Spear, Jessica C.; Custer, James P.; Batteas, James D.
  • Nanoscale, Vol. 7, Issue 22
  • DOI: 10.1039/C5NR01478F

Molecular Origins of Friction: The Force on Adsorbed Layers
journal, August 1994


Atomic-scale friction measurements on silver and chemisorbed oxygen surfaces
journal, December 1994


Electronic friction of physisorbed molecules
journal, November 1995

  • Persson, B. N. J.; Volokitin, A. I.
  • The Journal of Chemical Physics, Vol. 103, Issue 19
  • DOI: 10.1063/1.470125

Tribo- and photo-stimulated exoelectron emission from graphite
journal, January 1993


The emission of electrons and positive ions from fracture of materials
journal, October 1981

  • Dickinson, J. T.; Donaldson, E. E.; Park, M. K.
  • Journal of Materials Science, Vol. 16, Issue 10
  • DOI: 10.1007/BF02402856

Nanoscale Friction Varied by Isotopic Shifting of Surface Vibrational Frequencies
journal, November 2007


On the phonon dissipation contribution to nanoscale friction by direct contact
journal, June 2017

  • de Mello, S. R. Sales; da Costa, M. E. H. Maia; Menezes, C. M.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/s41598-017-03046-8

Experimental observation of phonon generation and propagation at a Mo S 2 ( 0001 ) surface in the friction process
journal, May 2016


Phononic Origins of Friction in Carbon Nanotube Oscillators
journal, March 2017


Frictional temperature rise in a sliding physisorbed monolayer of Kr/graphene
journal, October 2012


Role of relative humidity in atomic force microscopy imaging
journal, September 1993


Macroscale superlubricity enabled by graphene nanoscroll formation
journal, May 2015

  • Berman, D.; Deshmukh, S. A.; Sankaranarayanan, S. K. R. S.
  • Science, Vol. 348, Issue 6239
  • DOI: 10.1126/science.1262024

Switchable friction enabled by nanoscale self-assembly on graphene
journal, February 2016

  • Gallagher, Patrick; Lee, Menyoung; Amet, Francois
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10745

Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer
journal, August 2014

  • Berman, Diana; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S.
  • Advanced Functional Materials, Vol. 24, Issue 42
  • DOI: 10.1002/adfm.201401755

Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres
journal, June 2007


Hydrogen-free graphene edges
journal, January 2014

  • He, Kuang; Lee, Gun-Do; Robertson, Alex W.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4040

Adsorption and dissociation of molecular hydrogen on the edges of graphene nanoribbons
journal, November 2012

  • Bores, Cecilia; Cabria, Iván; Alonso, Julio A.
  • Journal of Nanoparticle Research, Vol. 14, Issue 12
  • DOI: 10.1007/s11051-012-1263-0

Enhanced Nanoscale Friction on Fluorinated Graphene
journal, February 2012

  • Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl204019k

Tuning friction atom-by-atom in an ion-crystal simulator
journal, June 2015


Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces
journal, December 2011

  • Bohlein, Thomas; Mikhael, Jules; Bechinger, Clemens
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3204

Anisotropy of frictional forces in muscovite mica
journal, November 1991


Structural lubricity under ambient conditions
journal, June 2016

  • Cihan, Ebru; İpek, Semran; Durgun, Engin
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12055

The evolving quality of frictional contact with graphene
journal, November 2016

  • Li, Suzhi; Li, Qunyang; Carpick, Robert W.
  • Nature, Vol. 539, Issue 7630
  • DOI: 10.1038/nature20135

Contact voltage-induced softening of RF microelectromechanical system gold-on-gold contacts at cryogenic temperatures
journal, August 2010

  • Berman, D.; Walker, M. J.; Krim, J.
  • Journal of Applied Physics, Vol. 108, Issue 4
  • DOI: 10.1063/1.3459893

Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene
journal, June 2011


Substrate effect on thickness-dependent friction on graphene
journal, October 2010

  • Li, Qunyang; Lee, Changgu; Carpick, Robert W.
  • physica status solidi (b), Vol. 247, Issue 11-12
  • DOI: 10.1002/pssb.201000555

Chemical Vapor Deposition-Grown Graphene: The Thinnest Solid Lubricant
journal, May 2011

  • Kim, Kwang-Seop; Lee, Hee-Jung; Lee, Changgu
  • ACS Nano, Vol. 5, Issue 6, p. 5107-5114
  • DOI: 10.1021/nn2011865

Nanoscale friction properties of graphene and graphene oxide
journal, April 2015


Adhesion and friction in mesoscopic graphite contacts
journal, May 2015


Superlubric Sliding of Graphene Nanoflakes on Graphene
journal, January 2013

  • Feng, Xiaofeng; Kwon, Sangku; Park, Jeong Young
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn305722d

Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate
journal, July 2016


Superlubricity of graphene nanoribbons on gold surfaces
journal, February 2016


Superlubricity between MoS 2 Monolayers
journal, May 2017


Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size
journal, July 2017


Ballistic nanofriction
journal, July 2010

  • Guerra, Roberto; Tartaglino, Ugo; Vanossi, Andrea
  • Nature Materials, Vol. 9, Issue 8
  • DOI: 10.1038/nmat2798

Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere
journal, February 2017

  • Liu, Shu-Wei; Wang, Hua-Ping; Xu, Qiang
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14029

Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions
journal, November 2013

  • Zhang, Rufan; Ning, Zhiyuan; Zhang, Yingying
  • Nature Nanotechnology, Vol. 8, Issue 12
  • DOI: 10.1038/nnano.2013.217

Works referencing / citing this record:

Supercritical Fluid‐Facilitated Exfoliation and Processing of 2D Materials
journal, July 2019


Structural Superlubricity Based on Crystalline Materials
journal, October 2019


Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development
journal, March 2019


Grain size and hydroxyl-coverage dependent tribology of polycrystalline graphene
journal, July 2019


Negative Friction Coefficients in Superlubric Graphite–Hexagonal Boron Nitride Heterojunctions
journal, February 2019


Recent highlights in nanoscale and mesoscale friction
journal, January 2018

  • Vanossi, Andrea; Dietzel, Dirk; Schirmeisen, Andre
  • Beilstein Journal of Nanotechnology, Vol. 9
  • DOI: 10.3762/bjnano.9.190

Iron‐Nanoparticle Driven Tribochemistry Leading to Superlubric Sliding Interfaces
journal, September 2019

  • Berman, Diana; Mutyala, Kalyan C.; Srinivasan, Srilok
  • Advanced Materials Interfaces, Vol. 6, Issue 23
  • DOI: 10.1002/admi.201901416

Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure
journal, August 2018


Nature-Guided Synthesis of Advanced Bio-Lubricants
journal, August 2019


Emerging superlubricity: A review of the state of the art and perspectives on future research
journal, December 2018

  • Baykara, Mehmet Z.; Vazirisereshk, Mohammad R.; Martini, Ashlie
  • Applied Physics Reviews, Vol. 5, Issue 4
  • DOI: 10.1063/1.5051445

Effect of Water Incorporation on the Lubrication Characteristics of Synthetic Oils
journal, September 2019


DLC and Glycerol: Superlubricity in Rolling/Sliding Elastohydrodynamic Lubrication
journal, January 2019


Nanomaterials in Superlubricity
journal, April 2019


Effect of atomic oxygen on corrosion and friction and wear behavior of polyimide composites
journal, August 2019

  • Duan, Chunjian; He, Ren; Li, Song
  • Journal of Applied Polymer Science, Vol. 137, Issue 10
  • DOI: 10.1002/app.48441

Nanoindentation unidirectional sliding and lateral force microscopy: Evaluation of experimental techniques to measure friction at the nanoscale
journal, December 2018

  • Echeverrigaray, F. G.; Sales de Mello, S. R.; Boeira, C. D.
  • AIP Advances, Vol. 8, Issue 12
  • DOI: 10.1063/1.5047801

Friction and wear property of lithium grease contained with copper oxide nanoparticles
journal, November 2019


Tribovoltaic Effect on Metal–Semiconductor Interface for Direct‐Current Low‐Impedance Triboelectric Nanogenerators
journal, January 2020

  • Zhang, Zhi; Jiang, Dongdong; Zhao, Junqing
  • Advanced Energy Materials, Vol. 10, Issue 9
  • DOI: 10.1002/aenm.201903713

Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure
journal, August 2018


Supercritical Fluid‐Facilitated Exfoliation and Processing of 2D Materials
journal, July 2019


Nature-Guided Synthesis of Advanced Bio-Lubricants
journal, August 2019


Recent highlights in nanoscale and mesoscale friction
journal, January 2018

  • Vanossi, Andrea; Dietzel, Dirk; Schirmeisen, Andre
  • Beilstein Journal of Nanotechnology, Vol. 9
  • DOI: 10.3762/bjnano.9.190