skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on November 6, 2018

Title: Inserting Porphyrin Quantum Dots in Bottom-Up Synthesized Graphene Nanoribbons

Diels–Alder copolymerization of tetraphenylcyclopentadienone, a precursor for cove graphene nanoribbons (cGNRs), with bifunctional porphyrins yields defined nanostructures comprised of a single cGNR-porphyrin-cGNR heterojunction within each ribbon. 13C NMR labeling and high-resolution mass spectrometry of solubilized polymer intermediates indicates that every porphyrin is covalently linked to two extended segments of cGNRs. UV/Vis absorption and fluorescence emission spectroscopy reveal a strong electronic correlation between the porphyrin and the adjacent cGNR segments that can be attenuated through reversible metalation of the porphyrin core. This versatile bottom-up synthetic strategy provides access to structurally well-defined, functional GNR-quantum dot-GNR heterostructures within a single graphene nanoribbon.
Authors:
 [1] ; ORCiD logo [2]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  2. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division; Univ. of California, Berkeley, CA (United States). Kavli Energy NanoSciences Inst.
Publication Date:
Grant/Contract Number:
AC02-05CH11231; SC0010409
Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 23; Journal Issue: 70; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1461124
Alternate Identifier(s):
OSTI ID: 1410700