skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diversifying Nanoparticle Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement

Abstract

Many macroscopic properties such as collective chiral responses enhanced by coupled plasmonic nanoparticles require complex nanostructures. However, a key challenge is to directly assemble nanosized building blocks into functional entities with designed morphologies. For example, the DNA templated nanoparticle assembly has low scalability and requires aqueous conditions, while other approaches such as controlled drying and polymer templating access only simple 1-D, 2-D, and 3-D structures with limited assembly patterns. In this paper, we demonstrate a new self-assembly strategy that expands the diversity of 3-D nanoparticle assemblies. By subjecting supramolecular nanocomposites to cylindrical confinement, a range of new nanoparticle assemblies such as stacked rings and single and double helices can be readily obtained with a precisely defined morphology. Circular dichroism dark field scattering measurements on the single nanowire with Au helical ribbon-like assembly show chiral plasmonic response several orders of magnitude higher than that of natural chiral materials. The phase behavior of supramolecular nanocomposite under geometric constraints is quite different from that of block copolymer. Finally, it depends on the complex interplay among nanoparticle packing and phase behavior of parent block copolymers under confinement and can be governed by nanoparticle diffusion.

Authors:
 [1];  [2];  [3];  [1];  [1]; ORCiD logo [3];  [4]; ORCiD logo [5]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  2. Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering
  3. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  4. Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  5. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1461122
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 11; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; cylindrical confinement; helical nanoparticle ribbon; infrared chirality; supramolecular nanocomposite

Citation Formats

Bai, Peter, Yang, Sui, Bao, Wei, Kao, Joseph, Thorkelsson, Kari, Salmeron, Miquel, Zhang, Xiang, and Xu, Ting. Diversifying Nanoparticle Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement. United States: N. p., 2017. Web. https://doi.org/10.1021/acs.nanolett.7b03131.
Bai, Peter, Yang, Sui, Bao, Wei, Kao, Joseph, Thorkelsson, Kari, Salmeron, Miquel, Zhang, Xiang, & Xu, Ting. Diversifying Nanoparticle Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement. United States. https://doi.org/10.1021/acs.nanolett.7b03131
Bai, Peter, Yang, Sui, Bao, Wei, Kao, Joseph, Thorkelsson, Kari, Salmeron, Miquel, Zhang, Xiang, and Xu, Ting. Mon . "Diversifying Nanoparticle Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement". United States. https://doi.org/10.1021/acs.nanolett.7b03131. https://www.osti.gov/servlets/purl/1461122.
@article{osti_1461122,
title = {Diversifying Nanoparticle Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement},
author = {Bai, Peter and Yang, Sui and Bao, Wei and Kao, Joseph and Thorkelsson, Kari and Salmeron, Miquel and Zhang, Xiang and Xu, Ting},
abstractNote = {Many macroscopic properties such as collective chiral responses enhanced by coupled plasmonic nanoparticles require complex nanostructures. However, a key challenge is to directly assemble nanosized building blocks into functional entities with designed morphologies. For example, the DNA templated nanoparticle assembly has low scalability and requires aqueous conditions, while other approaches such as controlled drying and polymer templating access only simple 1-D, 2-D, and 3-D structures with limited assembly patterns. In this paper, we demonstrate a new self-assembly strategy that expands the diversity of 3-D nanoparticle assemblies. By subjecting supramolecular nanocomposites to cylindrical confinement, a range of new nanoparticle assemblies such as stacked rings and single and double helices can be readily obtained with a precisely defined morphology. Circular dichroism dark field scattering measurements on the single nanowire with Au helical ribbon-like assembly show chiral plasmonic response several orders of magnitude higher than that of natural chiral materials. The phase behavior of supramolecular nanocomposite under geometric constraints is quite different from that of block copolymer. Finally, it depends on the complex interplay among nanoparticle packing and phase behavior of parent block copolymers under confinement and can be governed by nanoparticle diffusion.},
doi = {10.1021/acs.nanolett.7b03131},
journal = {Nano Letters},
number = 11,
volume = 17,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Organization of 'nanocrystal molecules' using DNA
journal, August 1996

  • Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang
  • Nature, Vol. 382, Issue 6592
  • DOI: 10.1038/382609a0

Preparation of Unique 1-D Nanoparticle Superstructures and Tailoring their Structural Features
journal, May 2010

  • Chen, Chun-Long; Rosi, Nathaniel L.
  • Journal of the American Chemical Society, Vol. 132, Issue 20
  • DOI: 10.1021/ja102000g

DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
journal, March 2012

  • Kuzyk, Anton; Schreiber, Robert; Fan, Zhiyuan
  • Nature, Vol. 483, Issue 7389
  • DOI: 10.1038/nature10889

Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds
journal, June 2009

  • Mastroianni, Alexander J.; Claridge, Shelley A.; Alivisatos, A. Paul
  • Journal of the American Chemical Society, Vol. 131, Issue 24, p. 8455-8459
  • DOI: 10.1021/ja808570g

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

Properties and emerging applications of self-assembled structures made from inorganic nanoparticles
journal, December 2009

  • Nie, Zhihong; Petukhova, Alla; Kumacheva, Eugenia
  • Nature Nanotechnology, Vol. 5, Issue 1
  • DOI: 10.1038/nnano.2009.453

Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles
journal, January 2009


PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


Building plasmonic nanostructures with DNA
journal, April 2011

  • Tan, Shawn J.; Campolongo, Michael J.; Luo, Dan
  • Nature Nanotechnology, Vol. 6, Issue 5
  • DOI: 10.1038/nnano.2011.49

Self-Assembly of Chiral Plasmonic Nanostructures
journal, June 2016


Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids
journal, January 2007

  • Warren, Scott C.; DiSalvo, Francis J.; Wiesner, Ulrich
  • Nature Materials, Vol. 6, Issue 2
  • DOI: 10.1038/nmat1819

Spontaneous Chirality in Simple Systems
journal, October 2000


Self-Assembly of Spherical Colloids into Helical Chains with Well-Controlled Handedness
journal, February 2003

  • Yin, Yadong; Xia, Younan
  • Journal of the American Chemical Society, Vol. 125, Issue 8
  • DOI: 10.1021/ja029408h

Integration of Colloidal Nanocrystals into Lithographically Patterned Devices
journal, June 2004

  • Cui, Yi; Björk, Mikael T.; Liddle, J. Alexander
  • Nano Letters, Vol. 4, Issue 6
  • DOI: 10.1021/nl049488i

Size-Selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures
journal, May 2003

  • Bockstaller, Michael R.; Lapetnikov, Yonit; Margel, Shlomo
  • Journal of the American Chemical Society, Vol. 125, Issue 18
  • DOI: 10.1021/ja034523t

Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules
journal, January 2013

  • Kao, Joseph; Thorkelsson, Kari; Bai, Peter
  • Chem. Soc. Rev., Vol. 42, Issue 7
  • DOI: 10.1039/C2CS35375J

Cylindrically Confined Diblock Copolymers
journal, November 2009

  • Dobriyal, Priyanka; Xiang, Hongqi; Kazuyuki, Matsunaga
  • Macromolecules, Vol. 42, Issue 22
  • DOI: 10.1021/ma901730a

Block Copolymers under Cylindrical Confinement
journal, July 2004

  • Xiang, Hongqi; Shin, Kyusoon; Kim, Taehyung
  • Macromolecules, Vol. 37, Issue 15
  • DOI: 10.1021/ma049299m

Self-assembly of PS-b-P4VP block copolymers of varying architectures in aerosol nanospheres
journal, January 2013

  • Rahikkala, Antti; Soininen, Antti J.; Ruokolainen, Janne
  • Soft Matter, Vol. 9, Issue 5
  • DOI: 10.1039/C2SM26913A

Distribution of Nanoparticles in Lamellar Domains of Block Copolymers
journal, May 2007

  • Chiu, Julia J.; Kim, Bumjoon J.; Yi, Gi-Ra
  • Macromolecules, Vol. 40, Issue 9
  • DOI: 10.1021/ma061503d

Predicting the Mesophases of Copolymer-Nanoparticle Composites
journal, June 2001

  • Thompson, Russell B.; Ginzburg, Valeriy V.; Matsen, Mark W.
  • Science, Vol. 292, Issue 5526, p. 2469-2472
  • DOI: 10.1126/science.1060585

Nanoparticle Assemblies in Thin Films of Supramolecular Nanocomposites
journal, April 2012

  • Kao, Joseph; Bai, Peter; Chuang, Vivian P.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300999u

Block Copolymer Self-Assembly–Directed Single-Crystal Homo- and Heteroepitaxial Nanostructures
journal, October 2010


Additive-Driven Phase-Selective Chemistry in Block Copolymer Thin Films: The Convergence of Top–Down and Bottom–Up Approaches
journal, June 2004


Block Copolymer−Ceramic Hybrid Materials from Organically Modified Ceramic Precursors
journal, October 2001

  • Simon, Peter F. W.; Ulrich, Ralph; Spiess, Hans W.
  • Chemistry of Materials, Vol. 13, Issue 10
  • DOI: 10.1021/cm0110674

Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases
journal, December 1997


Supramolecular Routes to Hierarchical Structures:  Comb-Coil Diblock Copolymers Organized with Two Length Scales
journal, February 1999

  • Ruokolainen, J.; Saariaho, M.; Ikkala, O.
  • Macromolecules, Vol. 32, Issue 4
  • DOI: 10.1021/ma980189n

Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites
journal, October 2009

  • Zhao, Yue; Thorkelsson, Kari; Mastroianni, Alexander J.
  • Nature Materials, Vol. 8, Issue 12
  • DOI: 10.1038/nmat2565

Rolling Up Gold Nanoparticle-Dressed DNA Origami into Three-Dimensional Plasmonic Chiral Nanostructures
journal, December 2011

  • Shen, Xibo; Song, Chen; Wang, Jinye
  • Journal of the American Chemical Society, Vol. 134, Issue 1
  • DOI: 10.1021/ja209861x

A New Peptide-Based Method for the Design and Synthesis of Nanoparticle Superstructures: Construction of Highly Ordered Gold Nanoparticle Double Helices
journal, October 2008

  • Chen, Chun-Long; Zhang, Peijun; Rosi, Nathaniel L.
  • Journal of the American Chemical Society, Vol. 130, Issue 41
  • DOI: 10.1021/ja805683r

Tailorable Plasmonic Circular Dichroism Properties of Helical Nanoparticle Superstructures
journal, June 2013

  • Song, Chengyi; Blaber, Martin G.; Zhao, Gongpu
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl4013776

Chiral Arrangement of Achiral Au Nanoparticles by Supramolecular Assembly of Helical Nanofiber Templates
journal, April 2014

  • Jung, Sung Ho; Jeon, Jiwon; Kim, Hyungjun
  • Journal of the American Chemical Society, Vol. 136, Issue 17
  • DOI: 10.1021/ja5018199

Universal scaling of local plasmons in chains of metal spheres
journal, January 2010

  • Arnold, Matthew D.; Blaber, Martin G.; Ford, Michael J.
  • Optics Express, Vol. 18, Issue 7
  • DOI: 10.1364/OE.18.007528

Chiral plasmonic DNA nanostructures with switchable circular dichroism
journal, December 2013

  • Schreiber, Robert; Luong, Ngoc; Fan, Zhiyuan
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3948

Optical Properties of Chiral Three-Dimensional Plasmonic Oligomers at the Onset of Charge-Transfer Plasmons
journal, October 2012

  • Hentschel, Mario; Wu, Lin; Schäferling, Martin
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn304283y

The physical significance of optical rotatory power
journal, January 1930


Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies
journal, December 2014

  • Esposito, Marco; Tasco, Vittorianna; Cuscunà, Massimo
  • ACS Photonics, Vol. 2, Issue 1
  • DOI: 10.1021/ph500318p

Circular differential scattering can be an important part of the circular dichroism of macromolecules.
journal, June 1983

  • Bustamante, C.; Tinoco, I.; Maestre, M. F.
  • Proceedings of the National Academy of Sciences, Vol. 80, Issue 12
  • DOI: 10.1073/pnas.80.12.3568

Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies
journal, July 2010

  • Fan, Zhiyuan; Govorov, Alexander O.
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl101231b

Nanoscale Charge Separation Using Chiral Molecules
journal, September 2015


Circular dichroism from single plasmonic nanostructures with extrinsic chirality
journal, January 2014


Attomolar DNA detection with chiral nanorod assemblies
journal, October 2013

  • Ma, Wei; Kuang, Hua; Xu, Liguang
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3689

Ultrasensitive detection and characterization of biomolecules using superchiral fields
journal, October 2010


The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy
journal, January 2008

  • Stephens, Philip J.; Devlin, Frank J.; Pan, Jian-Jung
  • Chirality, Vol. 20, Issue 5
  • DOI: 10.1002/chir.20477

A Chiral Route to Negative Refraction
journal, November 2004


Self-assembly of diblock copolymers under confinement
journal, January 2013


Self-Assembled Structures in Diblock Copolymers with Hydrogen-Bonded Amphiphilic Plasticizing Compounds
journal, December 2006

  • Valkama, Sami; Ruotsalainen, Teemu; Nykänen, Antti
  • Macromolecules, Vol. 39, Issue 26
  • DOI: 10.1021/ma060838s

Morphology of symmetric block copolymer in a cylindrical pore
journal, November 2001

  • Sevink, G. J. A.; Zvelindovsky, A. V.; Fraaije, J. G. E. M.
  • The Journal of Chemical Physics, Vol. 115, Issue 17
  • DOI: 10.1063/1.1403437

Phase Diagram for a Diblock Copolymer Melt under Cylindrical Confinement
journal, December 2005

  • Li, Weihua; Wickham, Robert A.; Garbary, Robert A.
  • Macromolecules, Vol. 39, Issue 2
  • DOI: 10.1021/ma052151y

Confinement-Induced Novel Morphologies of Block Copolymers
journal, April 2006


Self-Assembly of Diblock Copolymer Mixtures in Confined States:  A Monte Carlo Study
journal, April 2007


Cylindrically confined assembly of asymmetrical block copolymers with and without nanoparticles
journal, January 2012

  • Park, Jay Hoon; Kalra, Vibha; Joo, Yong Lak
  • Soft Matter, Vol. 8, Issue 6
  • DOI: 10.1039/C2SM06955E

A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation
journal, September 2008


    Works referencing / citing this record:

    Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects
    journal, December 2019

    • Mokashi‐Punekar, Soumitra; Zhou, Yicheng; Brooks, Sydney C.
    • Advanced Materials, Vol. 32, Issue 41
    • DOI: 10.1002/adma.201905975

    Formation of homochiral helical nanostructures in diblock copolymers under the confinement of nanopores
    journal, January 2019

    • Yang, Tao; Xue, Haiyan; Cao, Ruifang
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 13
    • DOI: 10.1039/c9cp00227h

    Diverse chiral assemblies of nanoparticles directed by achiral block copolymers via nanochannel confinement
    journal, January 2019

    • Zhang, Qian; Gu, Jiabin; Zhang, Liangshun
    • Nanoscale, Vol. 11, Issue 2
    • DOI: 10.1039/c8nr07036a

    Environmentally responsive plasmonic nanoassemblies for biosensing
    journal, January 2018

    • Wu, Xiaoling; Hao, Changlong; Kumar, Jatish
    • Chemical Society Reviews, Vol. 47, Issue 13
    • DOI: 10.1039/c7cs00894e

    Double‐Helical Nanostructures with Controllable Handedness in Bulk Diblock Copolymers
    journal, October 2018


    Double‐Helical Nanostructures with Controllable Handedness in Bulk Diblock Copolymers
    journal, November 2018

    • Lu, Xuemin; Li, Jingmin; Zhu, Dandan
    • Angewandte Chemie International Edition, Vol. 57, Issue 46
    • DOI: 10.1002/anie.201809676

    Circular assembly of colloidal nanoparticles at the liquid–air interface mediated by block copolymers
    journal, January 2018

    • Wang, Lei; Yang, Yuchi; Shen, Xiudi
    • Nanoscale, Vol. 10, Issue 23
    • DOI: 10.1039/c8nr02519c

    Recent progress in the self-assembly of block copolymers confined in emulsion droplets
    journal, January 2018

    • Yan, Nan; Zhu, Yutian; Jiang, Wei
    • Chemical Communications, Vol. 54, Issue 94
    • DOI: 10.1039/c8cc05812a

    Chirality-Based Biosensors
    journal, November 2018

    • Ma, Wei; Xu, Liguang; Wang, Libing
    • Advanced Functional Materials, Vol. 29, Issue 1
    • DOI: 10.1002/adfm.201805512

    Environmentally Responsive Plasmonic Nanoassemblies For Biosensing
    text, January 2018