skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

Abstract

The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. In this paper we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. Finally, GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

Authors:
 [1];  [1];  [1];  [2];  [3];  [1];  [1];  [2];  [2];  [4];  [1];  [1];  [4];  [3];  [5];  [6]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  2. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  3. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  4. Univ. of Texas, Austin, TX (United States). Center for Computational Materials. Inst. for Computational Engineering and Sciences. Dept. of Physics. Dept. of Chemical Engineering
  5. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division. Kavli Energy NanoSciences Inst.
  6. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division. Kavli Energy NanoSciences Inst.
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Office of Naval Research (ONR) (United States); Defense Advanced Research Projects Agency (DARPA) (United States); Army Research Lab. (ARL) (United States); US Army Research Office (ARO); National Science Foundation (NSF); Welch Foundation (United States); Swiss National Science Foundation (SNSF)
OSTI Identifier:
1461121
Grant/Contract Number:  
AC02-05CH11231; SC0010409; FG02-06ER46286; W911NF-15-1-0237; DMR-1508412; F-1837; P2ELP2-151852
Resource Type:
Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 12; Journal Issue: 11; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; electronic properties and devices; electronic properties and materials

Citation Formats

Nguyen, Giang D., Tsai, Hsin-Zon, Omrani, Arash A., Marangoni, Tomas, Wu, Meng, Rizzo, Daniel J., Rodgers, Griffin F., Cloke, Ryan R., Durr, Rebecca A., Sakai, Yuki, Liou, Franklin, Aikawa, Andrew S., Chelikowsky, James R., Louie, Steven G., Fischer, Felix R., and Crommie, Michael F. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. United States: N. p., 2017. Web. doi:10.1038/nnano.2017.155.
Nguyen, Giang D., Tsai, Hsin-Zon, Omrani, Arash A., Marangoni, Tomas, Wu, Meng, Rizzo, Daniel J., Rodgers, Griffin F., Cloke, Ryan R., Durr, Rebecca A., Sakai, Yuki, Liou, Franklin, Aikawa, Andrew S., Chelikowsky, James R., Louie, Steven G., Fischer, Felix R., & Crommie, Michael F. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. United States. doi:10.1038/nnano.2017.155.
Nguyen, Giang D., Tsai, Hsin-Zon, Omrani, Arash A., Marangoni, Tomas, Wu, Meng, Rizzo, Daniel J., Rodgers, Griffin F., Cloke, Ryan R., Durr, Rebecca A., Sakai, Yuki, Liou, Franklin, Aikawa, Andrew S., Chelikowsky, James R., Louie, Steven G., Fischer, Felix R., and Crommie, Michael F. Mon . "Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor". United States. doi:10.1038/nnano.2017.155. https://www.osti.gov/servlets/purl/1461121.
@article{osti_1461121,
title = {Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor},
author = {Nguyen, Giang D. and Tsai, Hsin-Zon and Omrani, Arash A. and Marangoni, Tomas and Wu, Meng and Rizzo, Daniel J. and Rodgers, Griffin F. and Cloke, Ryan R. and Durr, Rebecca A. and Sakai, Yuki and Liou, Franklin and Aikawa, Andrew S. and Chelikowsky, James R. and Louie, Steven G. and Fischer, Felix R. and Crommie, Michael F.},
abstractNote = {The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. In this paper we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. Finally, GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.},
doi = {10.1038/nnano.2017.155},
journal = {Nature Nanotechnology},
number = 11,
volume = 12,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Bottom-up fabrication of fluorenone GNRs. a, Schematic representation of the synthesis of fluorenone GNRs from molecular precursor 1. b, Representative STM topographic image of a fluorenone GNR (CO functionalized tip, Vs = −1.0 V, It = 10 pA). c, BRSTM image of the same fluorenone GNR as inmore » b. The covalent bond network within the GNR is clearly resolved (Vs = 40 mV, It = 10 pA, Vac = 20 mV, f = 401 Hz).« less

Save / Share:

Works referenced in this record:

Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions
journal, May 2013


Spatial Resolution of a Type II Heterojunction in a Single Bipolar Molecule
journal, December 2009

  • Tao, Chenggang; Sun, Jibin; Zhang, Xiaowei
  • Nano Letters, Vol. 9, Issue 12
  • DOI: 10.1021/nl901860n

The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy
journal, August 2009


Bottom-Up Synthesis of N = 13 Sulfur-Doped Graphene Nanoribbons
journal, January 2016

  • Nguyen, Giang D.; Toma, Francesca M.; Cao, Ting
  • The Journal of Physical Chemistry C, Vol. 120, Issue 5
  • DOI: 10.1021/acs.jpcc.5b09986

Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
journal, June 2013

  • Chen, Yen-Chia; de Oteyza, Dimas G.; Pedramrazi, Zahra
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401948e

Electronics using hybrid-molecular and mono-molecular devices
journal, November 2000

  • Joachim, C.; Gimzewski, J. K.; Aviram, A.
  • Nature, Vol. 408, Issue 6812, p. 541-548
  • DOI: 10.1038/35046000

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Bottom-up graphene nanoribbon field-effect transistors
journal, December 2013

  • Bennett, Patrick B.; Pedramrazi, Zahra; Madani, Ali
  • Applied Physics Letters, Vol. 103, Issue 25
  • DOI: 10.1063/1.4855116

Mechanism of high-resolution STM/AFM imaging with functionalized tips
journal, August 2014


Switchable Ternary Nanoporous Supramolecular Network on Photo-Regulation
journal, August 2011

  • Shen, Yong-Tao; Deng, Ke; Zhang, Xue-Mei
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201504x

Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping
journal, March 2013

  • Bronner, Christopher; Stremlau, Stephan; Gille, Marie
  • Angewandte Chemie International Edition, Vol. 52, Issue 16
  • DOI: 10.1002/anie.201209735

Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Barrier-free tunneling in a carbon heterojunction transistor
journal, July 2010

  • Yoon, Youngki; Salahuddin, Sayeef
  • Applied Physics Letters, Vol. 97, Issue 3
  • DOI: 10.1063/1.3431661

Large Spatially Resolved Rectification in a Donor–Acceptor Molecular Heterojunction
journal, March 2016


Graphene nanoribbon heterojunctions
journal, September 2014

  • Cai, Jinming; Pignedoli, Carlo A.; Talirz, Leopold
  • Nature Nanotechnology, Vol. 9, Issue 11
  • DOI: 10.1038/nnano.2014.184

Atomically controlled substitutional boron-doping of graphene nanoribbons
journal, August 2015

  • Kawai, Shigeki; Saito, Shohei; Osumi, Shinichiro
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9098

Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions
journal, January 2015


Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe
journal, May 2014


Real-space investigation of energy transfer in heterogeneous molecular dimers
journal, October 2016

  • Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi
  • Nature, Vol. 538, Issue 7625
  • DOI: 10.1038/nature19765

Half-metallic graphene nanoribbons
journal, November 2006

  • Son, Young-Woo; Cohen, Marvin L.; Louie, Steven G.
  • Nature, Vol. 444, Issue 7117
  • DOI: 10.1038/nature05180

Graphene nanoribbon tunnel field effect transistor with lightly doped drain: Numerical simulations
journal, November 2014

  • Ghoreishi, Seyed Saleh; Saghafi, Kamyar; Yousefi, Reza
  • Superlattices and Microstructures, Vol. 75
  • DOI: 10.1016/j.spmi.2014.07.042

Heterostructure bipolar transistors and integrated circuits
journal, January 1982


Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons
journal, July 2015

  • Cloke, Ryan R.; Marangoni, Tomas; Nguyen, Giang D.
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b02523

Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons
journal, August 2016

  • Marangoni, Tomas; Haberer, Danny; Rizzo, Daniel J.
  • Chemistry - A European Journal, Vol. 22, Issue 37
  • DOI: 10.1002/chem.201603497

Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
journal, August 2014

  • Ugeda, Miguel M.; Bradley, Aaron J.; Shi, Su-Fei
  • Nature Materials, Vol. 13, Issue 12
  • DOI: 10.1038/nmat4061

Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials
journal, August 2015


Efficient pseudopotentials for plane-wave calculations
journal, January 1991


    Works referencing / citing this record:

    Interface Characterization and Control of 2D Materials and Heterostructures
    journal, July 2018


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.