DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons

Abstract

Atomically precise engineering of defined segments within individual graphene nanoribbons (GNRs) represents a key enabling technology for the development of advanced functional device architectures. In this paper, the bottom-up synthesis of chevron GNRs decorated with reactive functional groups derived from 9-methyl-9H-carbazole is reported. Scanning tunneling and non-contact atomic force microscopy reveal that a thermal activation of GNRs induces the rearrangement of the electron-rich carbazole into an electron-deficient phenanthridine. Finally, the selective chemical edge-reconstruction of carbazole-substituted chevron GNRs represents a practical strategy for the controlled fabrication of spatially defined GNR heterostructures from a single molecular precursor.

Authors:
 [1];  [1];  [2];  [1];  [3]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  2. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  3. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division. Kavli Energy NanoSciences Inst.
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); National Inst. of Health (NIH) (United States); David and Lucile Packard Foundation (United States)
OSTI Identifier:
1461100
Alternate Identifier(s):
OSTI ID: 1401864
Grant/Contract Number:  
AC02-05CH11231; SC0010409; 0939514; SRR023679A; S10-RR027172
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 22; Journal Issue: 37; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; graphene; nanostructures; nc-AFM; STM; surface chemistry

Citation Formats

Marangoni, Tomas, Haberer, Danny, Rizzo, Daniel J., Cloke, Ryan R., and Fischer, Felix R. Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons. United States: N. p., 2016. Web. doi:10.1002/chem.201603497.
Marangoni, Tomas, Haberer, Danny, Rizzo, Daniel J., Cloke, Ryan R., & Fischer, Felix R. Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons. United States. https://doi.org/10.1002/chem.201603497
Marangoni, Tomas, Haberer, Danny, Rizzo, Daniel J., Cloke, Ryan R., and Fischer, Felix R. Tue . "Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons". United States. https://doi.org/10.1002/chem.201603497. https://www.osti.gov/servlets/purl/1461100.
@article{osti_1461100,
title = {Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons},
author = {Marangoni, Tomas and Haberer, Danny and Rizzo, Daniel J. and Cloke, Ryan R. and Fischer, Felix R.},
abstractNote = {Atomically precise engineering of defined segments within individual graphene nanoribbons (GNRs) represents a key enabling technology for the development of advanced functional device architectures. In this paper, the bottom-up synthesis of chevron GNRs decorated with reactive functional groups derived from 9-methyl-9H-carbazole is reported. Scanning tunneling and non-contact atomic force microscopy reveal that a thermal activation of GNRs induces the rearrangement of the electron-rich carbazole into an electron-deficient phenanthridine. Finally, the selective chemical edge-reconstruction of carbazole-substituted chevron GNRs represents a practical strategy for the controlled fabrication of spatially defined GNR heterostructures from a single molecular precursor.},
doi = {10.1002/chem.201603497},
journal = {Chemistry - A European Journal},
number = 37,
volume = 22,
place = {United States},
year = {2016},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic representation of the bottom-up synthesis of segmented nitrogen-doped chevron GNRs through an edge reconstruction strategy. Electron-rich carbazole (yellow) and electron-deficient phenanthridine (orange) subunits along the edges emerge from a thermal rearrangement of the 9-methyl-9Hcarbazole in building block 1.

Save / Share:

Works referenced in this record:

New advances in nanographene chemistry
journal, January 2015

  • Narita, Akimitsu; Wang, Xiao-Ye; Feng, Xinliang
  • Chemical Society Reviews, Vol. 44, Issue 18
  • DOI: 10.1039/C5CS00183H

Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy
journal, July 2015

  • Schuler, Bruno; Meyer, Gerhard; Peña, Diego
  • Journal of the American Chemical Society, Vol. 137, Issue 31
  • DOI: 10.1021/jacs.5b04056

Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping
journal, March 2013

  • Bronner, Christopher; Stremlau, Stephan; Gille, Marie
  • Angewandte Chemie, Vol. 125, Issue 16
  • DOI: 10.1002/ange.201209735

On-Surface Synthesis of Atomically Precise Graphene Nanoribbons
journal, February 2016

  • Talirz, Leopold; Ruffieux, Pascal; Fasel, Roman
  • Advanced Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adma.201505738

Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
journal, June 2013

  • Chen, Yen-Chia; de Oteyza, Dimas G.; Pedramrazi, Zahra
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401948e

Electronic Structure and Stability of Semiconducting Graphene Nanoribbons
journal, December 2006

  • Barone, Verónica; Hod, Oded; Scuseria, Gustavo E.
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl0617033

Recent Progress and Challenges in Graphene Nanoribbon Synthesis
journal, May 2012


Thermal decomposition reactions of n -alkylated 2-aminobiphenyls to carbazole and phenanthridine
journal, November 2006

  • Creencia, Evelyn Cuevas; Horaguchi, Takaaki
  • Journal of Heterocyclic Chemistry, Vol. 43, Issue 6
  • DOI: 10.1002/jhet.5570430605

Graphene nanoribbon heterojunctions
journal, September 2014

  • Cai, Jinming; Pignedoli, Carlo A.; Talirz, Leopold
  • Nature Nanotechnology, Vol. 9, Issue 11
  • DOI: 10.1038/nnano.2014.184

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
journal, February 2008


Quasiparticle Energies and Band Gaps in Graphene Nanoribbons
journal, November 2007


Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions
journal, January 2015


Energy Gaps in Graphene Nanoribbons
journal, November 2006


Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions
journal, May 2013


On-surface synthesis of graphene nanoribbons with zigzag edge topology
journal, March 2016

  • Ruffieux, Pascal; Wang, Shiyong; Yang, Bo
  • Nature, Vol. 531, Issue 7595
  • DOI: 10.1038/nature17151

Bottom-Up Synthesis of N = 13 Sulfur-Doped Graphene Nanoribbons
journal, January 2016

  • Nguyen, Giang D.; Toma, Francesca M.; Cao, Ting
  • The Journal of Physical Chemistry C, Vol. 120, Issue 5
  • DOI: 10.1021/acs.jpcc.5b09986

Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping
journal, March 2013

  • Bronner, Christopher; Stremlau, Stephan; Gille, Marie
  • Angewandte Chemie International Edition, Vol. 52, Issue 16
  • DOI: 10.1002/anie.201209735

Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy
journal, May 2016

  • Riss, Alexander; Paz, Alejandro Pérez; Wickenburg, Sebastian
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2506

Atomically controlled substitutional boron-doping of graphene nanoribbons
journal, August 2015

  • Kawai, Shigeki; Saito, Shohei; Osumi, Shinichiro
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9098

Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons
journal, February 2012

  • Blankenburg, Stephan; Cai, Jinming; Ruffieux, Pascal
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn203129a

Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons
journal, January 2014

  • Vo, Timothy H.; Shekhirev, Mikhail; Kunkel, Donna A.
  • Chem. Commun., Vol. 50, Issue 32
  • DOI: 10.1039/C4CC00885E

Electronic Structure of Atomically Precise Graphene Nanoribbons
journal, July 2012

  • Ruffieux, Pascal; Cai, Jinming; Plumb, Nicholas C.
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn3021376

Toward Cove-Edged Low Band Gap Graphene Nanoribbons
journal, May 2015

  • Liu, Junzhi; Li, Bo-Wei; Tan, Yuan-Zhi
  • Journal of the American Chemical Society, Vol. 137, Issue 18
  • DOI: 10.1021/jacs.5b03017

Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons
journal, July 2015

  • Cloke, Ryan R.; Marangoni, Tomas; Nguyen, Giang D.
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b02523

Electronic properties of armchair graphene nanoribbons
journal, March 2009


Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials
journal, August 2015


Electronic properties of armchair graphene nanoribbons
conference, January 2020

  • Bhojani, Amit K.; Soni, Himadri R.; Jha, Prafulla K.
  • DAE SOLID STATE PHYSICS SYMPOSIUM 2019, AIP Conference Proceedings
  • DOI: 10.1063/5.0017097

On-Surface Synthesis of Atomically Precise Graphene Nanoribbons
text, January 2016


Atomically precise bottom-up fabrication of graphene nanoribbons
text, January 2010

  • Cai, J. M.; Ruffieux, P.; Jaafar, R.
  • Nature Publishing Group
  • DOI: 10.5167/uzh-36020

Works referencing / citing this record:

Two‐Sidedness of Surface Reaction Mediation
journal, July 2019


Modified Engineering of Graphene Nanoribbons Prepared via On‐Surface Synthesis
journal, December 2019


On‐Surface Synthesis and Spectroscopic Characterization of Laterally Extended Chevron Graphene Nanoribbons
journal, June 2019

  • Teeter, Jacob D.; Zahl, Percy; Mehdi Pour, Mohammad
  • ChemPhysChem, Vol. 20, Issue 18
  • DOI: 10.1002/cphc.201900445

Scanning Probe Microscopy of Topological Structure Induced Electronic States of Graphene
journal, January 2020


Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)
journal, January 2018

  • Deniz, O.; Sánchez-Sánchez, C.; Jaafar, R.
  • Chemical Communications, Vol. 54, Issue 13
  • DOI: 10.1039/c7cc08353j

Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors
journal, January 2019

  • Narita, Akimitsu; Chen, Zongping; Chen, Qiang
  • Chemical Science, Vol. 10, Issue 4
  • DOI: 10.1039/c8sc03780a

Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons
journal, January 2019


Production and processing of graphene and related materials
journal, January 2020


Production and processing of graphene and related materials
text, January 2020

  • Backes, C.; Abdelkader, Am; Alonso, C.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.63418

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.