Patterning of graphene oxide with optoelectronic tweezers
Optoelectronic tweezers (OET) offer a means for parallel trapping and dynamic manipulation of micro-scale particles using low-intensity light. Such capabilities can facilitate the formation of bulk materials with a precisely tailored microstructure. Here, we report the use of OET to vertically align, trap, and reposition sheets of graphene oxide (GO) in liquids, paving the way for textured and patterned graphene macroassemblies that could offer superior performance for applications in energy storage, catalysis, and electronic devices. Trapping can be achieved with low-power light from inexpensive digital projectors and diode lasers, making it simple for users to create and apply patterns while avoiding undesirable photothermal heating effects. To give users a quantitative idea of trap stiffness, we also present a theoretical framework for predicting the maximum achievable speed of a GO platelet in an OET trap.
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- MS3 Initiative
- OSTI ID:
- 1460748
- Journal Information:
- Applied Physics Letters, Journal Name: Applied Physics Letters Vol. 113 Journal Issue: 3; ISSN 0003-6951
- Publisher:
- American Institute of PhysicsCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics
Raman Sideband Cooling of Molecules in an Optical Tweezer Array to the 3D Motional Ground State