skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields

Abstract

Here, the effects of kinetic whistler wave instabilities on the runaway-electron (RE) avalanche is investigated. With parameters from experiments at the DIII-D National Fusion Facility, we show that RE scattering from excited whistler waves can explain several poorly understood experimental results. We find an enhancement of the RE avalanche for low density and high electric field, but for high density and low electric field the scattering can suppress the avalanche and raise the threshold electric field, bringing the present model much closer to observations. The excitation of kinetic instabilities and the scattering of resonant electrons are calculated self-consistently using a quasilinear model and local approximation. We also explain the observed fast growth of electron cyclotron emission signals and excitation of very low-frequency whistler modes observed in the quiescent RE experiments at DIII-D tokamak. Simulations using ITER parameters show that by controlling the background thermal plasma density and temperature, the plasma waves can also be excited spontaneously in tokamak disruptions and the avalanche generation of runaway electrons may be suppressed.

Authors:
 [1];  [1];  [2];  [3];  [4];  [5]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Zhejiang Univ., Zhejianb (China); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  3. Princeton Univ., Princeton, NJ (United States)
  4. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., Princeton, NJ (United States)
  5. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1460736
Alternate Identifier(s):
OSTI ID: 1457584
Grant/Contract Number:  
AC02-09CH11466; SC0016268
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 26; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Liu, Chang, Hirvijoki, Eero, Fu, Guo -Yong, Brennan, Dylan P., Bhattacharjee, Amitava, and Paz-Soldan, Carlos. Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.265001.
Liu, Chang, Hirvijoki, Eero, Fu, Guo -Yong, Brennan, Dylan P., Bhattacharjee, Amitava, & Paz-Soldan, Carlos. Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields. United States. doi:10.1103/PhysRevLett.120.265001.
Liu, Chang, Hirvijoki, Eero, Fu, Guo -Yong, Brennan, Dylan P., Bhattacharjee, Amitava, and Paz-Soldan, Carlos. Thu . "Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields". United States. doi:10.1103/PhysRevLett.120.265001. https://www.osti.gov/servlets/purl/1460736.
@article{osti_1460736,
title = {Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields},
author = {Liu, Chang and Hirvijoki, Eero and Fu, Guo -Yong and Brennan, Dylan P. and Bhattacharjee, Amitava and Paz-Soldan, Carlos},
abstractNote = {Here, the effects of kinetic whistler wave instabilities on the runaway-electron (RE) avalanche is investigated. With parameters from experiments at the DIII-D National Fusion Facility, we show that RE scattering from excited whistler waves can explain several poorly understood experimental results. We find an enhancement of the RE avalanche for low density and high electric field, but for high density and low electric field the scattering can suppress the avalanche and raise the threshold electric field, bringing the present model much closer to observations. The excitation of kinetic instabilities and the scattering of resonant electrons are calculated self-consistently using a quasilinear model and local approximation. We also explain the observed fast growth of electron cyclotron emission signals and excitation of very low-frequency whistler modes observed in the quiescent RE experiments at DIII-D tokamak. Simulations using ITER parameters show that by controlling the background thermal plasma density and temperature, the plasma waves can also be excited spontaneously in tokamak disruptions and the avalanche generation of runaway electrons may be suppressed.},
doi = {10.1103/PhysRevLett.120.265001},
journal = {Physical Review Letters},
number = 26,
volume = 120,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1. FIG. 1.: (a) Growth of RE density with time, with wave diffusion (solid) and without (dashed). (b) ECE signals of second and third core ωce from synthetic diagnostics, with wave diffusion (solid) and without (dashed). (c) Evolution of f integrated over the pitch angle. (d) Whistler wave energy spectrum formore » t = 1.0s. Right boundary is the whistler wave resonance cone. (e) Whistler wave energy spectrum for t = 3.0s.« less

Save / Share:

Works referenced in this record:

Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
journal, October 2014

  • Pokol, G. I.; Kómár, A.; Budai, A.
  • Physics of Plasmas, Vol. 21, Issue 10
  • DOI: 10.1063/1.4895513

An ITPA joint experiment to study runaway electron generation and suppression
journal, July 2014

  • Granetz, R. S.; Esposito, B.; Kim, J. H.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4886802

Effective Critical Electric Field for Runaway-Electron Generation
journal, March 2015


The kinetic theory of runaway electron beam instability in a tokamak
journal, March 1978


Destabilization of magnetosonic-whistler waves by a relativistic runaway beam
journal, June 2006

  • Fülöp, T.; Pokol, G.; Helander, P.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2208327

Formation and termination of runaway beams in ITER disruptions
journal, April 2017


Runaway electrons in toroidal discharges
journal, June 1979


Adjoint Fokker-Planck equation and runaway electron dynamics
journal, January 2016

  • Liu, Chang; Brennan, Dylan P.; Bhattacharjee, Amitava
  • Physics of Plasmas, Vol. 23, Issue 1
  • DOI: 10.1063/1.4938510

Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm
journal, June 1992


Growth and decay of runaway electrons above the critical electric field under quiescent conditions
journal, February 2014

  • Paz-Soldan, C.; Eidietis, N. W.; Granetz, R.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4866912

The non-thermal origin of the tokamak low-density stability limit
journal, April 2016


Fokker-Planck simulations mylb of knock-on electron runaway avalanche and bursts in tokamaks
journal, November 1998


Long-Pulse Suprathermal Discharges in the ASDEX Tokamak
journal, October 1981


Quasilinear Diffusion of an Axisymmetric Toroidal Plasma
journal, January 1972


Relativistic limitations on runaway electrons
journal, June 1975


On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
journal, January 2018


Quasi-linear analysis of whistler waves driven by relativistic runaway beams in tokamaks
journal, February 2008


Numerical calculation of the runaway electron distribution function and associated synchrotron emission
journal, March 2014

  • Landreman, Matt; Stahl, Adam; Fülöp, Tünde
  • Computer Physics Communications, Vol. 185, Issue 3
  • DOI: 10.1016/j.cpc.2013.12.004

Stability analysis of runaway-driven waves in a tokamak
journal, March 2015


Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
journal, January 2013

  • Kómár, A.; Pokol, G. I.; Fülöp, T.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4776666

Effect of Partially Screened Nuclei on Fast-Electron Dynamics
journal, June 2017


Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks
journal, June 2017


Role of Bremsstrahlung Radiation in Limiting the Energy of Runaway Electrons in Tokamaks
journal, June 2005


Damping of relativistic electron beams by synchrotron radiation
journal, December 2001

  • Andersson, F.; Helander, P.; Eriksson, L. -G.
  • Physics of Plasmas, Vol. 8, Issue 12
  • DOI: 10.1063/1.1418242

Kinetics of relativistic runaway electrons
journal, October 2017


Resolving runaway electron distributions in space, time, and energy
journal, May 2018

  • Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5024223

Electron cyclotron emission from nonthermal tokamak plasmas
journal, February 1993

  • Harvey, R. W.; O’Brien, M. R.; Rozhdestvensky, V. V.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 2
  • DOI: 10.1063/1.860530

Theory of runaway electrons in ITER: Equations, important parameters, and implications for mitigation
journal, March 2015


Interaction of electromagnetic waves and suprathermal electrons in the near-critical electric field limit
journal, December 2012


Control of disruption-generated runaway plasmas in TFTR
journal, December 2014


Phase-space dynamics of runaway electrons in magnetic fields
journal, February 2017

  • Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 4
  • DOI: 10.1088/1361-6587/aa5952

Theory for avalanche of runaway electrons in tokamaks
journal, October 1997


First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks
journal, April 2018


Relativistic electron distribution function of a plasma in a near-critical electric field
journal, July 2006

  • Sandquist, P.; Sharapov, S. E.; Helander, P.
  • Physics of Plasmas, Vol. 13, Issue 7
  • DOI: 10.1063/1.2219428

Theory of Two Threshold Fields for Relativistic Runaway Electrons
journal, April 2015


Adjoint method and runaway electron avalanche
journal, December 2016


Electron-Electron and Positron-Electron Scattering Measurements
journal, April 1954

  • Ashkin, Arthur; Page, Lorne A.; Woodward, W. M.
  • Physical Review, Vol. 94, Issue 2
  • DOI: 10.1103/PhysRev.94.357

Investigation of ring-like runaway electron beams in the EAST tokamak
journal, April 2013


Control of runaway electron energy using externally injected whistler waves
journal, March 2018

  • Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5019381

Effect of bremsstrahlung radiation emission on fast electrons in plasmas
journal, September 2016


Zur Theorie des Durchgangs schneller Elektronen durch Materie
journal, January 1932


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.