skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum oscillations in the chiral magnetic conductivity

Abstract

In strong magnetic field, the longitudinal magnetoconductivity in three-dimensional chiral materials is shown to exhibit a new type of quantum oscillations arising from the chiral magnetic effect (CME). These quantum CME oscillations are predicted to dominate over the Shubnikov–de Haas (SdH) ones in chiral materials with an approximately conserved chirality of quasiparticles at strong magnetic fields. The phase of quantum CME oscillations differs from the phase of the conventional SdH oscillations by π/2.

Authors:
 [1];  [2]
  1. Stony Brook Univ., NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
1460711
Alternate Identifier(s):
OSTI ID: 1364669
Report Number(s):
BNL-207830-2018-JARP
Journal ID: ISSN 2469-9950; PRBMDO; TRN: US1901904
Grant/Contract Number:  
SC0012704; FG02-88ER40388; AC02-98CH10886; LDRD 16-004
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 23; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS

Citation Formats

Kaushik, Sahal, and Kharzeev, Dmitri E. Quantum oscillations in the chiral magnetic conductivity. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.235136.
Kaushik, Sahal, & Kharzeev, Dmitri E. Quantum oscillations in the chiral magnetic conductivity. United States. doi:10.1103/PhysRevB.95.235136.
Kaushik, Sahal, and Kharzeev, Dmitri E. Tue . "Quantum oscillations in the chiral magnetic conductivity". United States. doi:10.1103/PhysRevB.95.235136. https://www.osti.gov/servlets/purl/1460711.
@article{osti_1460711,
title = {Quantum oscillations in the chiral magnetic conductivity},
author = {Kaushik, Sahal and Kharzeev, Dmitri E.},
abstractNote = {In strong magnetic field, the longitudinal magnetoconductivity in three-dimensional chiral materials is shown to exhibit a new type of quantum oscillations arising from the chiral magnetic effect (CME). These quantum CME oscillations are predicted to dominate over the Shubnikov–de Haas (SdH) ones in chiral materials with an approximately conserved chirality of quasiparticles at strong magnetic fields. The phase of quantum CME oscillations differs from the phase of the conventional SdH oscillations by π/2.},
doi = {10.1103/PhysRevB.95.235136},
journal = {Physical Review B},
number = 23,
volume = 95,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs
journal, August 2015


Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena
journal, December 2013


Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface
journal, February 2016


Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires
journal, December 2015

  • Li, Cai-Zhen; Wang, Li-Xian; Liu, Haiwen
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10137

The Chiral Magnetic Effect and anomaly-induced transport
journal, March 2014


Axial-Vector Vertex in Spinor Electrodynamics
journal, January 1969


π Berry phase and Zeeman splitting of Weyl semimetal TaP
journal, January 2016

  • Hu, J.; Liu, J. Y.; Graf, D.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep18674

Detecting the chiral magnetic effect by lattice dynamics in Weyl semimetals
journal, December 2016


The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal
journal, November 1983


Topological response in Weyl semimetals and the chiral anomaly
journal, September 2012


Strain-induced chiral magnetic effect in Weyl semimetals
journal, December 2016


Chiral anomaly and classical negative magnetoresistance of Weyl metals
journal, September 2013


A PCAC puzzle: π0→γγ in the σ-model
journal, March 1969


Magnetotransport in Dirac metals: Chiral magnetic effect and quantum oscillations
journal, October 2015

  • Monteiro, Gustavo M.; Abanov, Alexander G.; Kharzeev, Dmitri E.
  • Physical Review B, Vol. 92, Issue 16
  • DOI: 10.1103/PhysRevB.92.165109

Helicity-protected ultrahigh mobility Weyl fermions in NbP
journal, March 2016


Chiral magnetic superconductivity
journal, January 2017


Berry Curvature, Triangle Anomalies, and the Chiral Magnetic Effect in Fermi Liquids
journal, November 2012


Chiral magnetic effect in ZrTe5
journal, February 2016

  • Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng
  • Nature Physics, Vol. 12, Issue 6
  • DOI: 10.1038/nphys3648

Electromagnetic Response of Weyl Semimetals
journal, July 2013


Dirac and Normal Fermions in Graphite and Graphene: Implications of the Quantum Hall Effect
journal, December 2006


Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2
journal, November 2014

  • Liang, Tian; Gibson, Quinn; Ali, Mazhar N.
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4143

Chiral magnetic effect
journal, October 2008


Axionic field theory of ( 3 + 1 ) -dimensional Weyl semimetals
journal, December 2013


Detection of Berry's Phase in a Bulk Rashba Semiconductor
journal, December 2013


Evidence for the chiral anomaly in the Dirac semimetal Na3Bi
journal, September 2015


Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP
journal, May 2016

  • Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11615

Triangle anomaly in Weyl semimetals
journal, January 2014