DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine Learning Predicts Laboratory Earthquakes

Abstract

Here, we apply machine learning to data sets from shear laboratory experiments, with the goal of identifying hidden signals that precede earthquakes. Here we show that by listening to the acoustic signal emitted by a laboratory fault, machine learning can predict the time remaining before it fails with great accuracy. These predictions are based solely on the instantaneous physical characteristics of the acoustical signal and do not make use of its history. Surprisingly, machine learning identifies a signal emitted from the fault zone previously thought to be low-amplitude noise that enables failure forecasting throughout the laboratory quake cycle. We infer that this signal originates from continuous grain motions of the fault gouge as the fault blocks displace. We posit that applying this approach to continuous seismic data may lead to significant advances in identifying currently unknown signals, in providing new insights into fault physics, and in placing bounds on fault failure times.

Authors:
 [1];  [2];  [3];  [2];  [4]; ORCiD logo [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Cambridge, Cambridge (United Kingdom)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boston Univ., Boston, MA (United States)
  4. Univ. of Cambridge, Cambridge (United Kingdom)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1460625
Report Number(s):
LA-UR-16-26108
Journal ID: ISSN 0094-8276
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 44; Journal Issue: 18; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Earth Sciences; Energy Sciences; Material Science; earthquake forecasting; critical stress state; brittle failure; machine learning; earthquake prediction; laboratory earthquake; acoustic signal identification; earthquake precursors

Citation Formats

Rouet-Leduc, Bertrand, Hulbert, Claudia, Lubbers, Nicholas, Barros, Kipton, Humphreys, Colin J., and Johnson, Paul Allan. Machine Learning Predicts Laboratory Earthquakes. United States: N. p., 2017. Web. doi:10.1002/2017GL074677.
Rouet-Leduc, Bertrand, Hulbert, Claudia, Lubbers, Nicholas, Barros, Kipton, Humphreys, Colin J., & Johnson, Paul Allan. Machine Learning Predicts Laboratory Earthquakes. United States. https://doi.org/10.1002/2017GL074677
Rouet-Leduc, Bertrand, Hulbert, Claudia, Lubbers, Nicholas, Barros, Kipton, Humphreys, Colin J., and Johnson, Paul Allan. Wed . "Machine Learning Predicts Laboratory Earthquakes". United States. https://doi.org/10.1002/2017GL074677. https://www.osti.gov/servlets/purl/1460625.
@article{osti_1460625,
title = {Machine Learning Predicts Laboratory Earthquakes},
author = {Rouet-Leduc, Bertrand and Hulbert, Claudia and Lubbers, Nicholas and Barros, Kipton and Humphreys, Colin J. and Johnson, Paul Allan},
abstractNote = {Here, we apply machine learning to data sets from shear laboratory experiments, with the goal of identifying hidden signals that precede earthquakes. Here we show that by listening to the acoustic signal emitted by a laboratory fault, machine learning can predict the time remaining before it fails with great accuracy. These predictions are based solely on the instantaneous physical characteristics of the acoustical signal and do not make use of its history. Surprisingly, machine learning identifies a signal emitted from the fault zone previously thought to be low-amplitude noise that enables failure forecasting throughout the laboratory quake cycle. We infer that this signal originates from continuous grain motions of the fault gouge as the fault blocks displace. We posit that applying this approach to continuous seismic data may lead to significant advances in identifying currently unknown signals, in providing new insights into fault physics, and in placing bounds on fault failure times.},
doi = {10.1002/2017GL074677},
journal = {Geophysical Research Letters},
number = 18,
volume = 44,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Non-volcanic tremor and low-frequency earthquake swarms
journal, March 2007

  • Shelly, David R.; Beroza, Gregory C.; Ide, Satoshi
  • Nature, Vol. 446, Issue 7133
  • DOI: 10.1038/nature05666

Acoustic emission and microslip precursors to stick-slip failure in sheared granular material: AE AND MICROSLIP PRECURSORS
journal, November 2013

  • Johnson, P. A.; Ferdowsi, B.; Kaproth, B. M.
  • Geophysical Research Letters, Vol. 40, Issue 21
  • DOI: 10.1002/2013GL057848

Large Earthquake Occurrence Estimation Based on Radial Basis Function Neural Networks
journal, September 2014

  • Alexandridis, Alex; Chondrodima, Eva; Efthimiou, Evangelos
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, Issue 9
  • DOI: 10.1109/TGRS.2013.2288979

Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault
journal, February 2017

  • Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul A.
  • Earth and Planetary Science Letters, Vol. 460
  • DOI: 10.1016/j.epsl.2016.12.014

Earthquake Forecasting Using Neural Networks: Results and Future Work
journal, June 2006


Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes
journal, April 2016

  • Bouchon, Michel; Marsan, David; Durand, Virginie
  • Nature Geoscience, Vol. 9, Issue 5
  • DOI: 10.1038/ngeo2701

The IASPEI procedure for the evaluation of earthquake precursors
journal, December 1997


Three-dimensional discrete element modeling of triggered slip in sheared granular media
journal, April 2014


Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan
journal, May 2002


The long precursory phase of most large interplate earthquakes
journal, March 2013

  • Bouchon, Michel; Durand, Virginie; Marsan, David
  • Nature Geoscience, Vol. 6, Issue 4
  • DOI: 10.1038/ngeo1770

Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments: AEs DOCUMENT STRESS CHANGES
journal, May 2013

  • W. Goebel, T. H.; Schorlemmer, D.; Becker, T. W.
  • Geophysical Research Letters, Vol. 40, Issue 10
  • DOI: 10.1002/grl.50507

Earthquake prediction: a critical review
journal, December 1997


Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones
journal, July 1984

  • Schwartz, David P.; Coppersmith, Kevin J.
  • Journal of Geophysical Research: Solid Earth, Vol. 89, Issue B7
  • DOI: 10.1029/JB089iB07p05681

On the micromechanics of slip events in sheared, fluid-saturated fault gouge: Stick-Slip Dynamics in Saturated Gouge
journal, June 2017

  • Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.
  • Geophysical Research Letters, Vol. 44, Issue 12
  • DOI: 10.1002/2017GL073768

Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones
journal, January 2009

  • Brown, Justin R.; Beroza, Gregory C.; Ide, Satoshi
  • Geophysical Research Letters, Vol. 36, Issue 19
  • DOI: 10.1029/2009GL040027

Correlation and variable importance in random forests
journal, March 2016

  • Gregorutti, Baptiste; Michel, Bertrand; Saint-Pierre, Philippe
  • Statistics and Computing, Vol. 27, Issue 3
  • DOI: 10.1007/s11222-016-9646-1

Crossover behavior in failure avalanches
journal, July 2006


Two categories of earthquake precursors, physical and tectonic, and their roles in intermediate-term earthquake prediction
journal, June 1988

  • Ishibashi, Katsuhiko
  • Pure and Applied Geophysics PAGEOPH, Vol. 126, Issue 2-4
  • DOI: 10.1007/BF00879015

Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical weakening and chemical strengthening
journal, January 2010

  • Niemeijer, André; Marone, Chris; Elsworth, Derek
  • Journal of Geophysical Research, Vol. 115, Issue B10
  • DOI: 10.1029/2009JB000838

GEOPHYSICS: Enhanced: Slow But Not Quite Silent
journal, June 2003


Intermediate-term prediction of occurrence times of strong earthquakes
journal, October 1988

  • Keilis-Borok, V. I.; Knopoff, L.; Rotwain, I. M.
  • Nature, Vol. 335, Issue 6192
  • DOI: 10.1038/335690a0

The debate on the prognostic value of earthquake foreshocks: A meta-analysis
journal, February 2014


The Parkfield, California, Earthquake Prediction Experiment
journal, August 1985


Deep-Focus Earthquake Analogs Recorded at High Pressure and Temperature in the Laboratory
journal, September 2013


Laboratory-Derived Friction laws and Their Application to Seismic Faulting
journal, May 1998


Random Forests
journal, January 2001


Predictability of repeating earthquakes near Parkfield, California: Parkfield microrepeater predictability
journal, April 2012


miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides
journal, September 2020

  • Meher, Prabina Kumar; Satpathy, Subhrajit; Rao, Atmakuri Ramakrishna
  • Scientific Reports, Vol. 10, Issue 1
  • DOI: 10.1038/s41598-020-71381-4

Correlation and variable importance in random forests
text, January 2013


Crossover behavior in failure avalanches
text, January 2005


Works referencing / citing this record:

Estimating Fault Friction From Seismic Signals in the Laboratory
journal, February 2018

  • Rouet‐Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.
  • Geophysical Research Letters, Vol. 45, Issue 3
  • DOI: 10.1002/2017gl076708

Inverse Problems in Geodynamics Using Machine Learning Algorithms
journal, January 2018

  • Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.
  • Journal of Geophysical Research: Solid Earth, Vol. 123, Issue 1
  • DOI: 10.1002/2017jb014846

A Deeper Look into ‘Deep Learning of Aftershock Patterns Following Large Earthquakes’: Illustrating First Principles in Neural Network Physical Interpretability
book, May 2019

  • Mignan, Arnaud; Broccardo, Marco; Rojas, Ignacio
  • Advances in Computational Intelligence: 15th International Work-Conference on Artificial Neural Networks, IWANN 2019, Gran Canaria, Spain, June 12-14, 2019, Proceedings, Part I, p. 3-14
  • DOI: 10.1007/978-3-030-20521-8_1

Model reduction for fractured porous media: a machine learning approach for identifying main flow pathways
journal, March 2019

  • Srinivasan, Shriram; Karra, Satish; Hyman, Jeffrey
  • Computational Geosciences, Vol. 23, Issue 3
  • DOI: 10.1007/s10596-019-9811-7

Geochemical Discrimination and Characteristics of Magmatic Tectonic Settings: A Machine-Learning-Based Approach
journal, April 2018

  • Ueki, Kenta; Hino, Hideitsu; Kuwatani, Tatsu
  • Geochemistry, Geophysics, Geosystems, Vol. 19, Issue 4
  • DOI: 10.1029/2017gc007401

Helicity Dynamics, Inverse, and Bidirectional Cascades in Fluid and Magnetohydrodynamic Turbulence: A Brief Review
journal, March 2019

  • Pouquet, A.; Rosenberg, D.; Stawarz, J. E.
  • Earth and Space Science, Vol. 6, Issue 3
  • DOI: 10.1029/2018ea000432

Automatic Waveform Classification and Arrival Picking Based on Convolutional Neural Network
journal, July 2019

  • Chen, Yangkang; Zhang, Guoyin; Bai, Min
  • Earth and Space Science, Vol. 6, Issue 7
  • DOI: 10.1029/2018ea000466

Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning
journal, May 2018

  • Li, Zefeng; Meier, Men-Andrin; Hauksson, Egill
  • Geophysical Research Letters, Vol. 45, Issue 10
  • DOI: 10.1029/2018gl077870

Emergent Wave Conversion as a Precursor to Shear Crack Initiation
journal, September 2018

  • Modiriasari, Anahita; Pyrak-Nolte, Laura J.; Bobet, Antonio
  • Geophysical Research Letters, Vol. 45, Issue 18
  • DOI: 10.1029/2018gl078622

Earthquake Catalog‐Based Machine Learning Identification of Laboratory Fault States and the Effects of Magnitude of Completeness
journal, December 2018

  • Lubbers, Nicholas; Bolton, David C.; Mohd‐Yusof, Jamaludin
  • Geophysical Research Letters, Vol. 45, Issue 24
  • DOI: 10.1029/2018gl079712

Machine Learning Can Predict the Timing and Size of Analog Earthquakes
journal, February 2019

  • Corbi, F.; Sandri, L.; Bedford, J.
  • Geophysical Research Letters, Vol. 46, Issue 3
  • DOI: 10.1029/2018gl081251

Reliable Real‐Time Seismic Signal/Noise Discrimination With Machine Learning
journal, January 2019

  • Meier, Men‐Andrin; Ross, Zachary E.; Ramachandran, Anshul
  • Journal of Geophysical Research: Solid Earth, Vol. 124, Issue 1
  • DOI: 10.1029/2018jb016661

Spatiotemporal Distribution of Microearthquakes and Implications Around the Seismic Gap Between the Wenchuan and Lushan Earthquakes
journal, August 2018


Machine Learning Reveals the State of Intermittent Frictional Dynamics in a Sheared Granular Fault
journal, July 2019

  • Ren, C. X.; Dorostkar, O.; Rouet‐Leduc, B.
  • Geophysical Research Letters, Vol. 46, Issue 13
  • DOI: 10.1029/2019gl082706

Pervasive Foreshock Activity Across Southern California
journal, August 2019

  • Trugman, Daniel T.; Ross, Zachary E.
  • Geophysical Research Letters, Vol. 46, Issue 15
  • DOI: 10.1029/2019gl083725

Isolating the Factors That Govern Fracture Development in Rocks Throughout Dynamic In Situ X‐Ray Tomography Experiments
journal, October 2019

  • McBeck, Jessica; Kandula, Neelima; Aiken, John M.
  • Geophysical Research Letters, Vol. 46, Issue 20
  • DOI: 10.1029/2019gl084613

Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano
journal, February 2020

  • Ren, C. X.; Peltier, A.; Ferrazzini, V.
  • Geophysical Research Letters, Vol. 47, Issue 3
  • DOI: 10.1029/2019gl085523

Predicting Imminence of Analog Megathrust Earthquakes With Machine Learning: Implications for Monitoring Subduction Zones
journal, March 2020

  • Corbi, F.; Bedford, J.; Sandri, L.
  • Geophysical Research Letters, Vol. 47, Issue 7
  • DOI: 10.1029/2019gl086615

Grain Friction Controls Characteristics of Seismic Cycle in Faults With Granular Gouge
journal, July 2019

  • Dorostkar, Omid; Carmeliet, Jan
  • Journal of Geophysical Research: Solid Earth, Vol. 124, Issue 7
  • DOI: 10.1029/2019jb017374

Similarity of fast and slow earthquakes illuminated by machine learning
journal, December 2018

  • Hulbert, Claudia; Rouet-Leduc, Bertrand; Johnson, Paul A.
  • Nature Geoscience, Vol. 12, Issue 1
  • DOI: 10.1038/s41561-018-0272-8

Continuous chatter of the Cascadia subduction zone revealed by machine learning
journal, December 2018

  • Rouet-Leduc, Bertrand; Hulbert, Claudia; Johnson, Paul A.
  • Nature Geoscience, Vol. 12, Issue 1
  • DOI: 10.1038/s41561-018-0274-6

Exploring the link between microseism and sea ice in Antarctica by using machine learning
journal, September 2019


Machine Learning for Waveform Spectral Analysis on Nuclear Explosion Signal and Performance of Broadband Vertical Component
journal, November 2018


Automatic high-resolution microseismic event detection via supervised machine learning
journal, June 2019

  • Qu, Shan; Guan, Zhe; Verschuur, Eric
  • Geophysical Journal International, Vol. 218, Issue 3
  • DOI: 10.1093/gji/ggz273

Prediction in a driven-dissipative system displaying a continuous phase transition using machine learning
journal, February 2020


From Stress Chains to Acoustic Emission
journal, July 2019


Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field
journal, May 2018

  • Holtzman, Benjamin K.; Paté, Arthur; Paisley, John
  • Science Advances, Vol. 4, Issue 5
  • DOI: 10.1126/sciadv.aao2929

Machine learning for data-driven discovery in solid Earth geoscience
journal, March 2019

  • Bergen, Karianne J.; Johnson, Paul A.; de Hoop, Maarten V.
  • Science, Vol. 363, Issue 6433
  • DOI: 10.1126/science.aau0323

New Deep Learning Genomic-Based Prediction Model for Multiple Traits with Binary, Ordinal, and Continuous Phenotypes
journal, March 2019

  • Montesinos-López, Osval A.; Martín-Vallejo, Javier; Crossa, José
  • G3: Genes|Genomes|Genetics, Vol. 9, Issue 5
  • DOI: 10.1534/g3.119.300585

New Opportunities and Challenges of Geo-ICT Convergence Technology: GeoCPS and GeoAI
journal, August 2019


Spatial Prediction of Aftershocks Triggered by a Major Earthquake: A Binary Machine Learning Perspective
journal, October 2019

  • Karimzadeh, Sadra; Matsuoka, Masashi; Kuang, Jianming
  • ISPRS International Journal of Geo-Information, Vol. 8, Issue 10
  • DOI: 10.3390/ijgi8100462

Ground Deformation Analysis Using InSAR and Backpropagation Prediction with Influencing Factors in Erhai Region, China
journal, May 2019

  • Wang, Yuyi; Guo, Yahui; Hu, Shunqiang
  • Sustainability, Vol. 11, Issue 10
  • DOI: 10.3390/su11102853

Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field
text, January 2018

  • Holtzman, Benjamin K.; Paté, Arthur; Paisley, John W.
  • Columbia University
  • DOI: 10.7916/d8hx2wgs

Automatic high-resolution microseismic event detection via supervised machine learning
journal, June 2020

  • Qu, Shan; Guan, Zhe; Verschuur, Eric
  • Geophysical Journal International, Vol. 222, Issue 3
  • DOI: 10.1093/gji/ggaa193

Estimating Fault Friction from Seismic Signals in the Laboratory
text, January 2017