DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acceleration of CO 2 insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics

Abstract

The insertion of CO2 into metal hydrides and the microscopic reverse decarboxylation of metal formates are important elementary steps in catalytic cycles for both CO2 hydrogenation to formic acid and methanol as well as formic acid and methanol dehydrogenation. Here, we use rapid mixing stopped-flow techniques to study the kinetics and mechanism of CO2 insertion into transition metal hydrides. The investigation finds that the most effective method to accelerate the rate of CO2 insertion into a metal hydride can be dependent on the nature of the rate-determining transition state (TS). We demonstrate that for an innersphere CO2 insertion reaction, which is proposed to have a direct interaction between CO2 and the metal in the rate-determining TS, the rate of insertion increases as the ancillary ligand becomes more electron rich or less sterically bulky. There is, however, no rate enhancement from Lewis acids (LA). In comparison, we establish that for an outersphere CO2 insertion, proposed to proceed with no interaction between CO2 and the metal in the rate-determining TS, there is a dramatic LA effect. Furthermore, for both inner- and outersphere reactions, we show that there is a small solvent effect on the rate of CO2 insertion. Solvents that have highermore » acceptor numbers generally lead to faster CO2 insertion. Our results provide an experimental method to determine the pathway for CO2 insertion and offer guidance for rate enhancement in CO2 reduction catalysis.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Department of Chemistry, Yale University, New Haven, USA
  2. Department of Chemistry, University of Missouri, Columbia, USA
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Light Energy Activated Redox Processes (LEAP); Yale Univ., New Haven, CT (United States); Univ. of Missouri, Columbia, MO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); National Inst. of Health (NIH) (United States)
OSTI Identifier:
1460464
Alternate Identifier(s):
OSTI ID: 1505499
Grant/Contract Number:  
SC0018222; SC0001059; CHE-1150826; GM050422
Resource Type:
Published Article
Journal Name:
Chemical Science
Additional Journal Information:
Journal Name: Chemical Science Journal Volume: 9 Journal Issue: 32; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Heimann, Jessica E., Bernskoetter, Wesley H., Hazari, Nilay, and Mayer, James M. Acceleration of CO 2 insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics. United Kingdom: N. p., 2018. Web. doi:10.1039/C8SC02535E.
Heimann, Jessica E., Bernskoetter, Wesley H., Hazari, Nilay, & Mayer, James M. Acceleration of CO 2 insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics. United Kingdom. https://doi.org/10.1039/C8SC02535E
Heimann, Jessica E., Bernskoetter, Wesley H., Hazari, Nilay, and Mayer, James M. Mon . "Acceleration of CO 2 insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics". United Kingdom. https://doi.org/10.1039/C8SC02535E.
@article{osti_1460464,
title = {Acceleration of CO 2 insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics},
author = {Heimann, Jessica E. and Bernskoetter, Wesley H. and Hazari, Nilay and Mayer, James M.},
abstractNote = {The insertion of CO2 into metal hydrides and the microscopic reverse decarboxylation of metal formates are important elementary steps in catalytic cycles for both CO2 hydrogenation to formic acid and methanol as well as formic acid and methanol dehydrogenation. Here, we use rapid mixing stopped-flow techniques to study the kinetics and mechanism of CO2 insertion into transition metal hydrides. The investigation finds that the most effective method to accelerate the rate of CO2 insertion into a metal hydride can be dependent on the nature of the rate-determining transition state (TS). We demonstrate that for an innersphere CO2 insertion reaction, which is proposed to have a direct interaction between CO2 and the metal in the rate-determining TS, the rate of insertion increases as the ancillary ligand becomes more electron rich or less sterically bulky. There is, however, no rate enhancement from Lewis acids (LA). In comparison, we establish that for an outersphere CO2 insertion, proposed to proceed with no interaction between CO2 and the metal in the rate-determining TS, there is a dramatic LA effect. Furthermore, for both inner- and outersphere reactions, we show that there is a small solvent effect on the rate of CO2 insertion. Solvents that have higher acceptor numbers generally lead to faster CO2 insertion. Our results provide an experimental method to determine the pathway for CO2 insertion and offer guidance for rate enhancement in CO2 reduction catalysis.},
doi = {10.1039/C8SC02535E},
journal = {Chemical Science},
number = 32,
volume = 9,
place = {United Kingdom},
year = {Mon Jan 01 00:00:00 EST 2018},
month = {Mon Jan 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C8SC02535E

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Representative stopped-flow data for CO2 insertion into 1. Reaction conditions: [1] = 0.6 mM, [CO2] = 45 mM, benzene, room temperature.

Save / Share:

Works referenced in this record:

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Incorporation of Pendant Bases into Rh(diphosphine) 2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO 2 Hydrogenation Activity of [Rh(P 2 N 2 ) 2 ] + Complexes
journal, June 2015

  • Lilio, Alyssia M.; Reineke, Mark H.; Moore, Curtis E.
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b04291

Well-Defined Iron Catalyst for Improved Hydrogenation of Carbon Dioxide and Bicarbonate
journal, December 2012

  • Ziebart, Carolin; Federsel, Christopher; Anbarasan, Pazhamalai
  • Journal of the American Chemical Society, Vol. 134, Issue 51
  • DOI: 10.1021/ja307924a

Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system
journal, January 2016

  • Singh, Ashish Kumar; Singh, Suryabhan; Kumar, Abhinav
  • Catalysis Science & Technology, Vol. 6, Issue 1
  • DOI: 10.1039/C5CY01276G

Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain
journal, August 2011

  • Peters, Martina; Köhler, Burkhard; Kuckshinrichs, Wilhelm
  • ChemSusChem, Vol. 4, Issue 9
  • DOI: 10.1002/cssc.201000447

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Cascade Catalysis for the Homogeneous Hydrogenation of CO 2 to Methanol
journal, November 2011

  • Huff, Chelsea A.; Sanford, Melanie S.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja208760j

The acceptor number ? A quantitative empirical parameter for the electrophilic properties of solvents
journal, January 1975

  • Mayer, Ulrich; Gutmann, Viktor; Gerger, Wolfgang
  • Monatshefte f�r Chemie, Vol. 106, Issue 6
  • DOI: 10.1007/BF00913599

SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps
journal, June 2016


Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium–Triphos catalyst: from mechanistic investigations to multiphase catalysis
journal, January 2015

  • Wesselbaum, Sebastian; Moha, Verena; Meuresch, Markus
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC02087A

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


Carbon Dioxide Insertion into Group 9 and 10 Metal–Element σ Bonds
journal, November 2017


Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO 2 to Methanol
journal, January 2015

  • Rezayee, Nomaan M.; Huff, Chelsea A.; Sanford, Melanie S.
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja511329m

A prolific catalyst for dehydrogenation of neat formic acid
journal, April 2016

  • Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11308

Effective Pincer Cobalt Precatalysts for Lewis Acid Assisted CO 2 Hydrogenation
journal, July 2016


Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
journal, May 2013

  • Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa
  • Chemistry - A European Journal, Vol. 19, Issue 25
  • DOI: 10.1002/chem.201301383

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Cation-anion interaction in the [Na-kryptofix-221][W(CO)5O2CH] derivative and its relevance in carbon dioxide reduction processes
journal, October 1985

  • Darensbourg, Donald J.; Pala, Magdalena
  • Journal of the American Chemical Society, Vol. 107, Issue 20
  • DOI: 10.1021/ja00306a014

Exploring the reactions of CO 2 with PCP supported nickel complexes
journal, January 2011

  • Schmeier, Timothy J.; Hazari, Nilay; Incarvito, Christopher D.
  • Chem. Commun., Vol. 47, Issue 6
  • DOI: 10.1039/C0CC03898A

Dissociation of lithium and sodium salts in ethereal solvents
journal, March 1968

  • Nicholls, Derek; Sutphen, C.; Szwarc, Michael
  • The Journal of Physical Chemistry, Vol. 72, Issue 3
  • DOI: 10.1021/j100849a041

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
journal, December 2016

  • Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen
  • Angewandte Chemie International Edition, Vol. 56, Issue 2
  • DOI: 10.1002/anie.201610182

Experimental and Computational Studies of the Reaction of Carbon Dioxide with Pincer-Supported Nickel and Palladium Hydrides
journal, November 2012

  • Suh, Hee-Won; Schmeier, Timothy J.; Hazari, Nilay
  • Organometallics, Vol. 31, Issue 23
  • DOI: 10.1021/om3008597

Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry
journal, January 2010

  • Clavier, Hervé; Nolan, Steven P.
  • Chemical Communications, Vol. 46, Issue 6
  • DOI: 10.1039/b922984a

A Family of Active Iridium Catalysts for Transfer Hydrogenation of Ketones
journal, August 2006

  • Clarke, Zaheer E.; Maragh, Paul T.; Dasgupta, Tara P.
  • Organometallics, Vol. 25, Issue 17
  • DOI: 10.1021/om060049z

Kinetic Aspects for the Reduction of CO 2 and CS 2 with Mixed-Ligand Ruthenium(II) Hydride Complexes Containing Phosphine and Bipyridine
journal, August 2014

  • Huang, Jing; Chen, Jinzhu; Gao, Hui
  • Inorganic Chemistry, Vol. 53, Issue 18
  • DOI: 10.1021/ic500866d

Kinetics and mechanistic analysis of an extremely rapid carbon dioxide fixation reaction
journal, January 2011

  • Huang, D.; Makhlynets, O. V.; Tan, L. L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 4
  • DOI: 10.1073/pnas.1017430108

Studies of Ions and Ion Pairs in Tetrahydrofuran Solution. Alkali Metal Salts of Tetraphenylboride
journal, February 1965

  • Bhattacharyya, D. N.; Lee, C. L.; Smid, J.
  • The Journal of Physical Chemistry, Vol. 69, Issue 2
  • DOI: 10.1021/j100886a042

Using CS 2 to Probe the Mechanistic Details of Decarboxylation of Bis(phosphinite)-Ligated Nickel Pincer Formate Complexes
journal, December 2016


Weakly Coordinating yet Ion Paired: Anion Effects on an Internal Rearrangement
journal, January 2017


Mechanistic Studies on the Selective Reduction of CO 2 to the Aldehyde Level by a Bis(phosphino)boryl (PBP)-Supported Nickel Complex
journal, August 2016


Iron catalyzed CO 2 hydrogenation to formate enhanced by Lewis acid co-catalysts
journal, January 2015

  • Zhang, Yuanyuan; MacIntosh, Alex D.; Wong, Janice L.
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/C5SC01467K

Comparative Reactivity of Zr– and Pd–Alkyl Complexes with Carbon Dioxide
journal, November 2013

  • Lau, Ka-Cheong; Petro, Benjamin J.; Bontemps, Sébastien
  • Organometallics, Vol. 32, Issue 23
  • DOI: 10.1021/om401082k

Combined Computational and Experimental Study of Substituent Effects on the Thermodynamics of H 2 , CO, Arene, and Alkane Addition to Iridium
journal, September 2002

  • Krogh-Jespersen, Karsten; Czerw, Margaret; Zhu, Keming
  • Journal of the American Chemical Society, Vol. 124, Issue 36
  • DOI: 10.1021/ja010547t

Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge?
journal, August 2011

  • Cokoja, Mirza; Bruckmeier, Christian; Rieger, Bernhard
  • Angewandte Chemie International Edition, Vol. 50, Issue 37
  • DOI: 10.1002/anie.201102010

Activation of coordinated carbon monoxide toward alkyl and aryl migration (carbon monoxide insertion) by molecular Lewis acids and x-ray structure of the reactive intermediate
journal, July 1980

  • Butts, Susan Beda; Strauss, Steven H.; Holt, Elizabeth M.
  • Journal of the American Chemical Society, Vol. 102, Issue 15
  • DOI: 10.1021/ja00535a048

Synthesis and Reactivity of Nickel and Palladium Fluoride Complexes with PCP Pincer Ligands. NMR-Based Assessment of Electron-Donating Properties of Fluoride and Other Monoanionic Ligands
journal, November 2011

  • Martı́nez-Prieto, Luis Miguel; Melero, Cristóbal; del Rı́o, Diego
  • Organometallics, Vol. 31, Issue 4
  • DOI: 10.1021/om2009793

Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)−Pincer Complexes
journal, October 2009

  • Tanaka, Ryo; Yamashita, Makoto; Nozaki, Kyoko
  • Journal of the American Chemical Society, Vol. 131, Issue 40
  • DOI: 10.1021/ja903574e

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide
journal, August 2016


A Computational Investigation of the Insertion of Carbon Dioxide into Four- and Five-Coordinate Iridium Hydrides
journal, May 2013

  • Bernskoetter, Wesley H.; Hazari, Nilay
  • European Journal of Inorganic Chemistry, Vol. 2013, Issue 22-23
  • DOI: 10.1002/ejic.201300170

Ion Pairing
journal, November 2006

  • Marcus, Yizhak; Hefter, Glenn
  • Chemical Reviews, Vol. 106, Issue 11
  • DOI: 10.1021/cr040087x

Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry
journal, May 2016

  • Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201507458

Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru–PNP Pincer Complexes
journal, November 2016

  • Alberico, Elisabetta; Lennox, Alastair J. J.; Vogt, Lydia K.
  • Journal of the American Chemical Society, Vol. 138, Issue 45
  • DOI: 10.1021/jacs.6b05692

Selective Electrocatalytic Reduction of CO 2 to Formate by Water-Stable Iridium Dihydride Pincer Complexes
journal, March 2012

  • Kang, Peng; Cheng, Chen; Chen, Zuofeng
  • Journal of the American Chemical Society, Vol. 134, Issue 12
  • DOI: 10.1021/ja300543s

Fast Carbon Dioxide Fixation by 2,6-Pyridinedicarboxamidato-nickel(II)-hydroxide Complexes: Influence of Changes in Reactive Site Environment on Reaction Rates
journal, October 2011

  • Huang, Deguang; Makhlynets, Olga V.; Tan, Lay Ling
  • Inorganic Chemistry, Vol. 50, Issue 20
  • DOI: 10.1021/ic200942u

Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts
journal, February 2017


Rapid Transfer of Hydride Ion from a Ruthenium Complex to C 1 Species in Water
journal, August 2007

  • Creutz, Carol; Chou, Mei H.
  • Journal of the American Chemical Society, Vol. 129, Issue 33
  • DOI: 10.1021/ja074158w

Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release
journal, January 2016

  • Mellmann, Dörthe; Sponholz, Peter; Junge, Henrik
  • Chemical Society Reviews, Vol. 45, Issue 14
  • DOI: 10.1039/C5CS00618J

Synthesis, Characterization, and Reactivity of Nickel Hydride Complexes Containing 2,6-C 6 H 3 (CH 2 PR 2 ) 2 (R = t Bu, c Hex, and i Pr) Pincer Ligands
journal, June 2009

  • Boro, Brian J.; Duesler, Eileen N.; Goldberg, Karen I.
  • Inorganic Chemistry, Vol. 48, Issue 12
  • DOI: 10.1021/ic8020194

Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity
journal, September 2011

  • Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory
  • Angewandte Chemie International Edition, Vol. 50, Issue 42
  • DOI: 10.1002/anie.201104542

Synthesis and properties of [Ru(tpy)(4,4′-X2bpy)H]+ (tpy=2,2′:6′,2″-terpyridine, bpy=2,2′-bipyridine, X=H and MeO), and their reactions with CO2
journal, March 2000


Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
journal, October 2017


Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst
journal, March 2015

  • Bielinski, Elizabeth A.; Förster, Moritz; Zhang, Yuanyuan
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/acscatal.5b00137

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Carbon dioxide hydrogenation catalysed by well-defined Mn( i ) PNP pincer hydride complexes
journal, January 2017

  • Bertini, Federica; Glatz, Mathias; Gorgas, Nikolaus
  • Chemical Science, Vol. 8, Issue 7
  • DOI: 10.1039/C7SC00209B

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
journal, December 2016

  • Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen
  • Angewandte Chemie, Vol. 129, Issue 2
  • DOI: 10.1002/ange.201610182

Works referencing / citing this record:

Isolation of the Metalated Ylides [Ph 3 P−C−CN]M (M=Li, Na, K): Influence of the Metal Ion on the Structure and Bonding Situation
journal, January 2019

  • Schwarz, Christopher; Scharf, Lennart T.; Scherpf, Thorsten
  • Chemistry - A European Journal, Vol. 25, Issue 11
  • DOI: 10.1002/chem.201805421

Isolation of the Metalated Ylides [Ph 3 P−C−CN]M (M=Li, Na, K): Influence of the Metal Ion on the Structure and Bonding Situation
journal, January 2019

  • Schwarz, Christopher; Scharf, Lennart T.; Scherpf, Thorsten
  • Chemistry - A European Journal, Vol. 25, Issue 11
  • DOI: 10.1002/chem.201805421

Synthesis of porous coordination polymers using carbon dioxide as a direct source
journal, January 2019

  • Kadota, Kentaro; Duong, Nghia Tuan; Nishiyama, Yusuke
  • Chemical Communications, Vol. 55, Issue 63
  • DOI: 10.1039/c9cc04771a