DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte

Abstract

Abstract Solid polymer electrolytes (SPEs) promise to improve the safety and performance of lithium ion batteries (LIBs). However, the low ionic conductivity and transference number of conventional poly(ethylene oxide) (PEO)‐based SPEs preclude their widespread implementation. Herein, crosslinked poly(tetrahydrofuran) (xPTHF) is introduced as a promising polymer matrix for “beyond PEO” SPEs. The crosslinking procedure creates thermally stable, mechanically robust membranes for use in LIBs. Molecular dynamics and density functional theory (DFT) simulations accompanied by 7 Li NMR measurements show that the lower spatial concentration of oxygen atoms in the xPTHF backbone leads to loosened O–Li + coordination. This weakened interaction enhances ion transport; xPTHF has a high lithium transference number of 0.53 and higher lithium conductivity than a xPEO SPE of the same length at room temperature. It is demonstrated that organic additives further weaken the O–Li + interaction, enabling room temperature ionic conductivity of 1.2 × 10 −4 S cm −1 with 18 wt% N,N ‐dimethylformamide in xPTHF. In a solid‐state LIB application, neat xPTHF SPEs cycle with near theoretical capacity for 100 cycles at 70 °C, with rate capability up to 1 C. The plasticized xPTHF SPEs operate at room temperature while maintaining respectable rate capability and capacity. Themore » novel PTHF system demonstrated here represents an exciting platform for future studies involving SPEs.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [1]
  1. Stanford University Department of Chemical Engineering Shriram Center 443 Via Ortega, Room 307 Stanford CA 94305‐4125 USA
  2. Stanford University Department of Materials Science McCullough 476 Lomita Mall, Room 343 Stanford CA 94305 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1460461
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 8 Journal Issue: 25; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Mackanic, David G., Michaels, Wesley, Lee, Minah, Feng, Dawei, Lopez, Jeffrey, Qin, Jian, Cui, Yi, and Bao, Zhenan. Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte. Germany: N. p., 2018. Web. doi:10.1002/aenm.201800703.
Mackanic, David G., Michaels, Wesley, Lee, Minah, Feng, Dawei, Lopez, Jeffrey, Qin, Jian, Cui, Yi, & Bao, Zhenan. Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte. Germany. https://doi.org/10.1002/aenm.201800703
Mackanic, David G., Michaels, Wesley, Lee, Minah, Feng, Dawei, Lopez, Jeffrey, Qin, Jian, Cui, Yi, and Bao, Zhenan. Sun . "Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte". Germany. https://doi.org/10.1002/aenm.201800703.
@article{osti_1460461,
title = {Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte},
author = {Mackanic, David G. and Michaels, Wesley and Lee, Minah and Feng, Dawei and Lopez, Jeffrey and Qin, Jian and Cui, Yi and Bao, Zhenan},
abstractNote = {Abstract Solid polymer electrolytes (SPEs) promise to improve the safety and performance of lithium ion batteries (LIBs). However, the low ionic conductivity and transference number of conventional poly(ethylene oxide) (PEO)‐based SPEs preclude their widespread implementation. Herein, crosslinked poly(tetrahydrofuran) (xPTHF) is introduced as a promising polymer matrix for “beyond PEO” SPEs. The crosslinking procedure creates thermally stable, mechanically robust membranes for use in LIBs. Molecular dynamics and density functional theory (DFT) simulations accompanied by 7 Li NMR measurements show that the lower spatial concentration of oxygen atoms in the xPTHF backbone leads to loosened O–Li + coordination. This weakened interaction enhances ion transport; xPTHF has a high lithium transference number of 0.53 and higher lithium conductivity than a xPEO SPE of the same length at room temperature. It is demonstrated that organic additives further weaken the O–Li + interaction, enabling room temperature ionic conductivity of 1.2 × 10 −4 S cm −1 with 18 wt% N,N ‐dimethylformamide in xPTHF. In a solid‐state LIB application, neat xPTHF SPEs cycle with near theoretical capacity for 100 cycles at 70 °C, with rate capability up to 1 C. The plasticized xPTHF SPEs operate at room temperature while maintaining respectable rate capability and capacity. The novel PTHF system demonstrated here represents an exciting platform for future studies involving SPEs.},
doi = {10.1002/aenm.201800703},
journal = {Advanced Energy Materials},
number = 25,
volume = 8,
place = {Germany},
year = {Sun Jul 15 00:00:00 EDT 2018},
month = {Sun Jul 15 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201800703

Citation Metrics:
Cited by: 152 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes
journal, November 2004

  • Stubbs, John M.; Potoff, Jeffrey J.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 108, Issue 45
  • DOI: 10.1021/jp049459w

The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors
journal, June 2004

  • Alarco, Pierre-Jean; Abu-Lebdeh, Yaser; Abouimrane, Ali
  • Nature Materials, Vol. 3, Issue 7
  • DOI: 10.1038/nmat1158

Electrochemical comparison of several cross-linked polyethers
journal, April 1998


Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes
journal, June 2016

  • Kimura, Kento; Motomatsu, Joh; Tominaga, Yoichi
  • The Journal of Physical Chemistry C, Vol. 120, Issue 23
  • DOI: 10.1021/acs.jpcc.6b03277

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Conductivities, thermal properties and Raman studies of poly(tetramethylene glycol) based polymer electrolytes
journal, April 1998


Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature
journal, September 2016


A Superior Polymer Electrolyte with Rigid Cyclic Carbonate Backbone for Rechargeable Lithium Ion Batteries
journal, May 2017

  • Chai, Jingchao; Liu, Zhihong; Zhang, Jianjun
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 21
  • DOI: 10.1021/acsami.7b02844

Poly(ethylene oxide)-based electrolytes for lithium-ion batteries
journal, January 2015

  • Xue, Zhigang; He, Dan; Xie, Xiaolin
  • Journal of Materials Chemistry A, Vol. 3, Issue 38
  • DOI: 10.1039/C5TA03471J

Polymer solid electrolytes based on viologen-type poly(oxytetramethylene) ionene
journal, April 2004


In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO 2 Lithium Batteries
journal, November 2016


Solid Hybrid Polymer Electrolyte Networks: Nano-Structurable Materials for Lithium Batteries
journal, August 2002


Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries
journal, December 2016


High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis
journal, August 2017


Variation of the mesh size of PEO-based networks filled with TFSILi: from an Arrhenius to WLF type conductivity behavior
journal, February 2000


Interfacial Challenges in Solid-State Li Ion Batteries
journal, October 2015

  • Luntz, Alan C.; Voss, Johannes; Reuter, Karsten
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b02352

Flexible Organic–Inorganic Hybrid Solid Electrolytes Formed via Thiol–Acrylate Photopolymerization
journal, February 2017


Polymer Electrolytes
journal, July 2013


Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO 2 nanoparticles
journal, January 2014

  • Tominaga, Yoichi; Yamazaki, Kenta
  • Chem. Commun., Vol. 50, Issue 34
  • DOI: 10.1039/C3CC49588D

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


Ionic conductivity in crystalline polymer electrolytes
journal, August 2001

  • Gadjourova, Zlatka; Andreev, Yuri G.; Tunstall, David P.
  • Nature, Vol. 412, Issue 6846
  • DOI: 10.1038/35087538

Review of gel-type polymer electrolytes for lithium-ion batteries
journal, February 1999


Li+-conductive polymer electrolytes derived from poly(1,3-dioxolane) and polytetrahydrofuran
journal, January 1991


In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes
journal, April 2004


Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes
journal, July 2015


CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
journal, January 2009

  • Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.
  • Journal of Computational Chemistry
  • DOI: 10.1002/jcc.21367

Complexes of alkali metal ions with poly(ethylene oxide)
journal, November 1973


Polymer electrolytes for lithium polymer batteries
journal, January 2016

  • Long, Lizhen; Wang, Shuanjin; Xiao, Min
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/C6TA02621D

Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)–N,N–dimethylformamide–LiClO4 polymer gel electrolytes
journal, August 2004


A comparison of models for calculating nuclear magnetic resonance shielding tensors
journal, April 1996

  • Cheeseman, James R.; Trucks, Gary W.; Keith, Todd A.
  • The Journal of Chemical Physics, Vol. 104, Issue 14
  • DOI: 10.1063/1.471789

Lithium ion conductivity in polyoxyethylene/polyethylenimine blends
journal, March 2001


Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes
journal, March 1998

  • Martin, Marcus G.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B
  • DOI: 10.1021/jp972543

Review—Solid Electrolytes in Rechargeable Electrochemical Cells
journal, January 2015

  • Goodenough, John B.; Singh, Preetam
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0021514jes

Conductivities of electrolytes based on PEI-b-PEO-b-PEI triblock copolymers with lithium and copper TFSI salts
journal, March 2006


Conductivity hysteresis in polymer electrolytes incorporating poly(tetrahydrofuran)
journal, January 2007


What Can We Learn from Ionic Conductivity Measurements in Polymer Electrolytes? A Case Study on Poly(ethylene oxide) (PEO)–NaI and PEO–LiTFSI
journal, February 2012

  • Stolwijk, Nicolaas A.; Wiencierz, Manfred; Heddier, Christian
  • The Journal of Physical Chemistry B, Vol. 116, Issue 10
  • DOI: 10.1021/jp2111956

Review—On Order and Disorder in Polymer Electrolytes
journal, January 2015

  • Golodnitsky, D.; Strauss, E.; Peled, E.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0161514jes

The effects of radiation-induced crosslinking on the conductance of LiClO4·PEO electrolytes
journal, January 1984


The Compensation Effect in the Vogel–Tammann–Fulcher (VTF) Equation for Polymer-Based Electrolytes
journal, May 2017


Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts
journal, January 2016

  • Kerner, Manfred; Plylahan, Nareerat; Scheers, Johan
  • RSC Advances, Vol. 6, Issue 28
  • DOI: 10.1039/C5RA25048J

Nonflammable perfluoropolyether-based electrolytes for lithium batteries
journal, February 2014

  • Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 9
  • DOI: 10.1073/pnas.1314615111

Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries
journal, January 2016

  • Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19892

Improved Description of Nuclear Magnetic Resonance Chemical Shielding Constants Using the M06-L Meta-Generalized-Gradient-Approximation Density Functional
journal, July 2008

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 30
  • DOI: 10.1021/jp804583d

Ionic Conductivity of Polymeric Solid Electrolytes Based on Poly(propylene oxide) or Poly(tetramethylene oxide)
journal, November 1982

  • Watanabe, Masayoshi; Nagaoka, Katsuro; Kanba, Motoi
  • Polymer Journal, Vol. 14, Issue 11
  • DOI: 10.1295/polymj.14.877

Improvement of heat stability of poly(l-lactic acid) by radiation-induced crosslinking
journal, June 2005


Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries
journal, February 2016


Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study
journal, April 2011


Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries
journal, February 2017


Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Highly conductive solid polymer electrolyte membranes based on polyethylene glycol-bis-carbamate dimethacrylate networks
journal, August 2017


Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends
journal, November 2002


Electrochemical measurement of transference numbers in polymer electrolytes
journal, December 1987


Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance
journal, February 2003


Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes
journal, January 2017

  • Savoie, Brett M.; Webb, Michael A.; Miller, Thomas F.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 3
  • DOI: 10.1021/acs.jpclett.6b02662

Polymer electrolytes
journal, January 1993

  • Bruce, P. G.; Vincent, C. A.
  • Journal of the Chemical Society, Faraday Transactions, Vol. 89, Issue 17
  • DOI: 10.1039/ft9938903187

In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries
journal, January 2018


Crystal Structure of the Polymer Electrolyte Poly(ethylene oxide)3:LiCF3SO3
journal, November 1993


Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview
journal, October 2008


PEO-Based Electrolyte Membranes Based on LiBC[sub 4]O[sub 8] Salt
journal, January 2004

  • Appetecchi, G. B.; Zane, D.; Scrosati, B.
  • Journal of The Electrochemical Society, Vol. 151, Issue 9
  • DOI: 10.1149/1.1774488

Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
journal, April 1984

  • Frisch, Michael J.; Pople, John A.; Binkley, J. Stephen
  • The Journal of Chemical Physics, Vol. 80, Issue 7
  • DOI: 10.1063/1.447079

Photocured PEO-based solid polymer electrolyte and its application to lithium–polymer batteries
journal, January 2001


Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups
journal, October 2012


Electrochemical characterization of new conducting polymer electrolytes
journal, June 1993


Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries
journal, August 2015


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Phase Behavior and Electrochemical Characterization of Blends of Perfluoropolyether, Poly(ethylene glycol), and a Lithium Salt
journal, January 2015

  • Wong, Dominica H. C.; Vitale, Alessandra; Devaux, Didier
  • Chemistry of Materials, Vol. 27, Issue 2
  • DOI: 10.1021/cm504228a

Structure and Ionic Conductivity of Polystyrene- block -poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit
journal, February 2016


Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries
journal, January 2017


Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions
journal, October 2004

  • Canongia Lopes, José N.; Pádua, Agílio A. H.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 43
  • DOI: 10.1021/jp0476545

Ionic conductivity, glass transition, and local free volume in poly(ethylene oxide) electrolytes: Single and mixed ion conductors
journal, May 2003

  • Bamford, D.; Reiche, A.; Dlubek, G.
  • The Journal of Chemical Physics, Vol. 118, Issue 20
  • DOI: 10.1063/1.1567717

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362