skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancement of CO2 Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality

Abstract

The complex [Zn2(tdc)2dabco] (H2tdc = thiophene-2,5-dicarboxylic acid; dabco = 1,4-diazabicyclooctane) shows a remarkable increase in carbon dioxide (CO2) uptake and CO2/dinitrogen (N2) selectivity compared to the nonthiophene analogue [Zn2(bdc)2dabco] (H2bdc = benzene-1,4-dicarboxylic acid; terephthalic acid). CO2 adsorption at 1 bar for [Zn2(tdc)2dabco] is 67.4 cm3·g-1(13.2 wt %) at 298 K and 153 cm3·g-1(30.0 wt %) at 273 K. For [Zn2(bdc)2dabco], the equivalent values are 46 cm3·g-1(9.0 wt %) and 122 cm3·g-1(23.9 wt %), respectively. The isosteric heat of adsorption for CO2 in [Zn2(tdc)2dabco] at zero coverage is low (23.65 kJ·mol-1), ensuring facile regeneration of the porous material. Enhancement by the thiophene group on the separation of CO2/N2 gas mixtures has been confirmed by both ideal adsorbate solution theory calculations and dynamic breakthrough experiments. The preferred binding sites of adsorbed CO2 in [Zn2(tdc)2dabco] have been unambiguously determined by in situ single-crystal diffraction studies on CO2-loaded [Zn2(tdc)2dabco], coupled with quantum-chemical calculations. These studies unveil the role of the thiophene moieties in the specific CO2 binding via an induced dipole interaction between CO2 and the sulfur center, confirming that an enhanced CO2 capacity in [Zn2(tdc)2dabco] is achieved without the presence of open metal sites. The experimental data and theoretical insight suggest a viablemore » strategy for improvement of the adsorption properties of already known materials through the incorporation of sulfur-based heterocycles within their porous structures.« less

Authors:
 [1];  [2];  [2];  [3];  [3];  [3]; ORCiD logo [4];  [4];  [3];  [5];  [6]; ORCiD logo [6];  [2];  [2]; ORCiD logo [7]
  1. Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)
  2. Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation); Novosibirsk State Univ., Novosibirsk (Russian Federation)
  3. Univ. of Manchester, Manchester (United Kingdom)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Univ. of Bath, Bath (United Kingdom); Univ. of Nottingham, Nottingham (United Kingdom)
  6. Univ. of Nottingham, Nottingham (United Kingdom)
  7. Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation); Univ. of Manchester, Manchester (United Kingdom)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1460318
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 57; Journal Issue: 9; Related Information: © 2018 American Chemical Society.; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Carbon dioxide; metal-organic framework; thiophene; carboxylate; zinc; binding site; breakthrough

Citation Formats

Bolotov, Vsevolod A., Kovalenko, Konstantin A., Samsonenko, Denis G., Han, Xue, Zhang, Xinran, Smith, Gemma L., MCormick, Laura J., Teat, Simon J., Yang, Sihai, Lennox, Matthew J., Henley, Alice, Besley, Elena, Fedin, Vladimir P., Dybtsev, Danil N., and Schroder, Martin. Enhancement of CO2 Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality. United States: N. p., 2018. Web. doi:10.1021/acs.inorgchem.8b00138.
Bolotov, Vsevolod A., Kovalenko, Konstantin A., Samsonenko, Denis G., Han, Xue, Zhang, Xinran, Smith, Gemma L., MCormick, Laura J., Teat, Simon J., Yang, Sihai, Lennox, Matthew J., Henley, Alice, Besley, Elena, Fedin, Vladimir P., Dybtsev, Danil N., & Schroder, Martin. Enhancement of CO2 Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality. United States. doi:10.1021/acs.inorgchem.8b00138.
Bolotov, Vsevolod A., Kovalenko, Konstantin A., Samsonenko, Denis G., Han, Xue, Zhang, Xinran, Smith, Gemma L., MCormick, Laura J., Teat, Simon J., Yang, Sihai, Lennox, Matthew J., Henley, Alice, Besley, Elena, Fedin, Vladimir P., Dybtsev, Danil N., and Schroder, Martin. Mon . "Enhancement of CO2 Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality". United States. doi:10.1021/acs.inorgchem.8b00138. https://www.osti.gov/servlets/purl/1460318.
@article{osti_1460318,
title = {Enhancement of CO2 Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality},
author = {Bolotov, Vsevolod A. and Kovalenko, Konstantin A. and Samsonenko, Denis G. and Han, Xue and Zhang, Xinran and Smith, Gemma L. and MCormick, Laura J. and Teat, Simon J. and Yang, Sihai and Lennox, Matthew J. and Henley, Alice and Besley, Elena and Fedin, Vladimir P. and Dybtsev, Danil N. and Schroder, Martin},
abstractNote = {The complex [Zn2(tdc)2dabco] (H2tdc = thiophene-2,5-dicarboxylic acid; dabco = 1,4-diazabicyclooctane) shows a remarkable increase in carbon dioxide (CO2) uptake and CO2/dinitrogen (N2) selectivity compared to the nonthiophene analogue [Zn2(bdc)2dabco] (H2bdc = benzene-1,4-dicarboxylic acid; terephthalic acid). CO2 adsorption at 1 bar for [Zn2(tdc)2dabco] is 67.4 cm3·g-1(13.2 wt %) at 298 K and 153 cm3·g-1(30.0 wt %) at 273 K. For [Zn2(bdc)2dabco], the equivalent values are 46 cm3·g-1(9.0 wt %) and 122 cm3·g-1(23.9 wt %), respectively. The isosteric heat of adsorption for CO2 in [Zn2(tdc)2dabco] at zero coverage is low (23.65 kJ·mol-1), ensuring facile regeneration of the porous material. Enhancement by the thiophene group on the separation of CO2/N2 gas mixtures has been confirmed by both ideal adsorbate solution theory calculations and dynamic breakthrough experiments. The preferred binding sites of adsorbed CO2 in [Zn2(tdc)2dabco] have been unambiguously determined by in situ single-crystal diffraction studies on CO2-loaded [Zn2(tdc)2dabco], coupled with quantum-chemical calculations. These studies unveil the role of the thiophene moieties in the specific CO2 binding via an induced dipole interaction between CO2 and the sulfur center, confirming that an enhanced CO2 capacity in [Zn2(tdc)2dabco] is achieved without the presence of open metal sites. The experimental data and theoretical insight suggest a viable strategy for improvement of the adsorption properties of already known materials through the incorporation of sulfur-based heterocycles within their porous structures.},
doi = {10.1021/acs.inorgchem.8b00138},
journal = {Inorganic Chemistry},
number = 9,
volume = 57,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

CCDC 1503064: Experimental Crystal Structure Determination: GIDCOO : catena-((μ-1,4-diazabicyclo(2.2.2)octane)-bis(μ-thiophene-2,5-dicarboxylato)-di-zinc)
dataset, September 2016

  • Bolotov, Vsevolod A.; Kovalenko, Konstantin A.; Samsonenko, Denis G.
  • Cambridge Structural Database (CSD)
  • DOI: 10.5517/ccdc.csd.cc1mg1y2

CCDC 1503065: Experimental Crystal Structure Determination: GIDCUU : catena-((μ-1,2-bis(4-pyridyl)ethane)-bis(μ-thiophene-2,5-dicarboxylato)-di-zinc dimethylformamide solvate)
dataset, September 2016

  • Bolotov, Vsevolod A.; Kovalenko, Konstantin A.; Samsonenko, Denis G.
  • Cambridge Structural Database (CSD)
  • DOI: 10.5517/ccdc.csd.cc1mg1z3

CCDC 1568882: Experimental Crystal Structure Determination: GIDCOO01 : catena-[(μ-1,4-diazabicyclo[2.2.2]octane)-bis(μ-thiophene-2,5-dicarboxylato)-di-zinc]
dataset, August 2017

  • Bolotov, Vsevolod A.; Kovalenko, Konstantin A.; Samsonenko, Denis G.
  • Cambridge Structural Database (CSD)
  • DOI: 10.5517/ccdc.csd.cc1pnk30

CCDC 1568883: Experimental Crystal Structure Determination: GICTAQ : catena-[(μ-1,4-diazabicyclo[2.2.2]octane)-bis(μ-thiophene-2,5-dicarboxylato)-di-zinc carbon dioxide]
dataset, August 2017

  • Bolotov, Vsevolod A.; Kovalenko, Konstantin A.; Samsonenko, Denis G.
  • Cambridge Structural Database (CSD)
  • DOI: 10.5517/ccdc.csd.cc1pnk41

CCDC 1568884: Experimental Crystal Structure Determination: GICTEU : catena-(bis(μ-thiophene-2,5-dicarboxylato)-(μ-1,4-diazabicyclo[2.2.2]octane)-di-zinc(ii) carbon dioxide)
dataset, August 2017

  • Bolotov, Vsevolod A.; Kovalenko, Konstantin A.; Samsonenko, Denis G.
  • Cambridge Structural Database (CSD)
  • DOI: 10.5517/ccdc.csd.cc1pnk52

CCDC 1568885: Experimental Crystal Structure Determination: GICFIK : catena-[bis(μ-thiophene-2,5-dicarboxylato)-(μ-1,4-diazabicyclo[2.2.2]octane)-di-zinc(ii) carbon dioxide]
dataset, August 2017

  • Bolotov, Vsevolod A.; Kovalenko, Konstantin A.; Samsonenko, Denis G.
  • Cambridge Structural Database (CSD)
  • DOI: 10.5517/ccdc.csd.cc1pnk63

Computational screening, synthesis and testing of metal–organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates
journal, January 2019

  • Müller, Philipp; Bucior, Benjamin; Tuci, Giulia
  • Molecular Systems Design & Engineering, Vol. 4, Issue 5
  • DOI: 10.1039/c9me00062c

CCDC 1503066: Experimental Crystal Structure Determination: GIDDAB : catena-((μ-1,3-bis(4-pyridyl)propane)-bis(μ-thiophene-2,5-dicarboxylato)-di-zinc dimethylformamide solvate)
dataset, September 2016

  • Bolotov, Vsevolod A.; Kovalenko, Konstantin A.; Samsonenko, Denis G.
  • Cambridge Structural Database (CSD)
  • DOI: 10.5517/ccdc.csd.cc1mg205

Network Coordination Polymers Based on Thieno[3,2-b]Thiophene-2,5-Dicarboxylic Acid
journal, September 2019

  • Samsonova, A. M.; Bolotov, V. A.; Samsonenko, D. G.
  • Journal of Structural Chemistry, Vol. 60, Issue 9
  • DOI: 10.1134/s0022476619090117

Computational screening, synthesis and testing of metal–organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates
journal, January 2019

  • Müller, Philipp; Bucior, Benjamin; Tuci, Giulia
  • Molecular Systems Design & Engineering, Vol. 4, Issue 5
  • DOI: 10.1039/c9me00062c

Network Coordination Polymers Based on Thieno[3,2-b]Thiophene-2,5-Dicarboxylic Acid
journal, September 2019

  • Samsonova, A. M.; Bolotov, V. A.; Samsonenko, D. G.
  • Journal of Structural Chemistry, Vol. 60, Issue 9
  • DOI: 10.1134/s0022476619090117

Two-Dimensional Coordination Polymer {[Bi(Рyz)I3]}: Structure and Analysis of the Packing Using the Hirshfeld Surface Method
journal, January 2020

  • Usoltsev, A. N.; Adonin, S. A.; Novikov, A. S.
  • Russian Journal of Coordination Chemistry, Vol. 46, Issue 1
  • DOI: 10.1134/s107032842001008x

Coordination Polymers Based on Oxovanadium(IV) Butylmalonate Fragments and Potassium, Magnesium, and Cadmium Cations
journal, February 2020

  • Bazhina, E. S.; Aleksandrov, G. G.; Kiskin, M. A.
  • Russian Journal of Coordination Chemistry, Vol. 46, Issue 2
  • DOI: 10.1134/s1070328420020025