DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrostatically actuated encased cantilevers

Abstract

Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip–sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip–sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid,more » compatible with air, or vacuum environments.« less

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry; Scuba Probe Technologies LLC, Alameda, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Scuba Probe Technologies LLC, Almeda, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1460304
Alternate Identifier(s):
OSTI ID: 1460613
Grant/Contract Number:  
AC02-05CH11231; SC0013212
Resource Type:
Accepted Manuscript
Journal Name:
Beilstein Journal of Nanotechnology
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2190-4286
Publisher:
Beilstein Institute
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 47 OTHER INSTRUMENTATION; amplitude calibration; atomic force microscopy; electrostatic excitation; encased cantilevers; liquid AFM; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Desbiolles, Benoit X. E., Furlan, Gabriela, Schwartzberg, Adam M., Ashby, Paul D., and Ziegler, Dominik. Electrostatically actuated encased cantilevers. United States: N. p., 2018. Web. doi:10.3762/bjnano.9.130.
Desbiolles, Benoit X. E., Furlan, Gabriela, Schwartzberg, Adam M., Ashby, Paul D., & Ziegler, Dominik. Electrostatically actuated encased cantilevers. United States. https://doi.org/10.3762/bjnano.9.130
Desbiolles, Benoit X. E., Furlan, Gabriela, Schwartzberg, Adam M., Ashby, Paul D., and Ziegler, Dominik. Tue . "Electrostatically actuated encased cantilevers". United States. https://doi.org/10.3762/bjnano.9.130. https://www.osti.gov/servlets/purl/1460304.
@article{osti_1460304,
title = {Electrostatically actuated encased cantilevers},
author = {Desbiolles, Benoit X. E. and Furlan, Gabriela and Schwartzberg, Adam M. and Ashby, Paul D. and Ziegler, Dominik},
abstractNote = {Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip–sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip–sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments.},
doi = {10.3762/bjnano.9.130},
journal = {Beilstein Journal of Nanotechnology},
number = 1,
volume = 9,
place = {United States},
year = {Tue May 08 00:00:00 EDT 2018},
month = {Tue May 08 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Investigation of fluid cell resonances in intermittent contact mode atomic force microscopy
journal, July 2007

  • Kokavecz, J.; Mechler, A.
  • Applied Physics Letters, Vol. 91, Issue 2
  • DOI: 10.1063/1.2753104

Studies of vibrating atomic force microscope cantilevers in liquid
journal, October 1996

  • Schäffer, T. E.; Cleveland, J. P.; Ohnesorge, F.
  • Journal of Applied Physics, Vol. 80, Issue 7
  • DOI: 10.1063/1.363308

Influence of spurious resonances on the interaction force in dynamic AFM
journal, January 2015

  • Costa, Luca; Rodrigues, Mario S.
  • Beilstein Journal of Nanotechnology, Vol. 6
  • DOI: 10.3762/bjnano.6.42

Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid
journal, December 2008

  • Carrasco, C.; Ares, P.; de Pablo, P. J.
  • Review of Scientific Instruments, Vol. 79, Issue 12
  • DOI: 10.1063/1.3053369

Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism
journal, October 2009

  • Asakawa, Hitoshi; Fukuma, Takeshi
  • Review of Scientific Instruments, Vol. 80, Issue 10
  • DOI: 10.1063/1.3238484

DMCMN: In Depth Characterization and Control of AFM Cantilevers With Integrated Sensing and Actuation
journal, November 2009

  • Fantner, Georg E.; Burns, Daniel J.; Belcher, Angela M.
  • Journal of Dynamic Systems, Measurement, and Control, Vol. 131, Issue 6
  • DOI: 10.1115/1.4000378

Single-chip mechatronic microsystem for surface imaging and force response studies
journal, November 2004

  • Hafizovic, S.; Barrettino, D.; Volden, T.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 49
  • DOI: 10.1073/pnas.0405725101

Micro‐fabricated piezoelectric cantilever for atomic force microscopy
journal, November 1996

  • Watanabe, Shunji; Fujii, Toru
  • Review of Scientific Instruments, Vol. 67, Issue 11
  • DOI: 10.1063/1.1147290

High spatial resolution Kelvin probe force microscopy with coaxial probes
journal, February 2012


Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor
journal, August 1997

  • Edwards, Hal; Taylor, Larry; Duncan, Walter
  • Journal of Applied Physics, Vol. 82, Issue 3
  • DOI: 10.1063/1.365936

Scanning Probe with Tuning Fork Sensor, Microfabricated Silicon Cantilever and Conductive Tip for Microscopy at Cryogenic Temperature
journal, March 2006

  • Akiyama, Terunobu; Suter, Kaspar; de Rooij, Nicolaas F.
  • Japanese Journal of Applied Physics, Vol. 45, Issue 3B
  • DOI: 10.1143/JJAP.45.1992

Ultra-Sensitive Imaging and Interfacial Analysis of Patterned Hydrophilic SAM Surfaces Using Energy Dissipation Chemical Force Microscopy
journal, May 2005

  • Ashby, Paul D.; Lieber, Charles M.
  • Journal of the American Chemical Society, Vol. 127, Issue 18
  • DOI: 10.1021/ja0453127

A magnetically driven oscillating probe microscope for operation in liquids
journal, December 1996

  • Han, Wenhai; Lindsay, S. M.; Jing, Tianwei
  • Applied Physics Letters, Vol. 69, Issue 26
  • DOI: 10.1063/1.117835

Active atomic force microscopy cantilevers for imaging in liquids
journal, May 2001

  • Buguin, A.; Du Roure, O.; Silberzan, P.
  • Applied Physics Letters, Vol. 78, Issue 19
  • DOI: 10.1063/1.1371250

Mechanical and thermal effects of laser irradiation on force microscope cantilevers
journal, July 1992


Scanning attractive force microscope using photothermal vibration
journal, March 1991

  • Umeda, N.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 9, Issue 2
  • DOI: 10.1116/1.585187

Photothermal modulation for oscillating mode atomic force microscopy in solution
journal, April 1998

  • Ratcliff, Glenn C.; Erie, Dorothy A.; Superfine, Richard
  • Applied Physics Letters, Vol. 72, Issue 15
  • DOI: 10.1063/1.121224

Optical excitation of nanoelectromechanical oscillators
journal, May 2005

  • Ilic, B.; Krylov, S.; Aubin, K.
  • Applied Physics Letters, Vol. 86, Issue 19
  • DOI: 10.1063/1.1919395

High-Resolution Frequency-Modulation Atomic Force Microscopy in Liquids Using Electrostatic Excitation Method
journal, June 2010

  • Umeda, Ken-ichi; Oyabu, Noriaki; Kobayashi, Kei
  • Applied Physics Express, Vol. 3, Issue 6
  • DOI: 10.1143/APEX.3.065205

Quantitative electrostatic force measurement in AFM
journal, April 2000


Direct actuation of cantilever in aqueous solutions by electrostatic force using high-frequency electric fields
journal, September 2012

  • Umeda, Ken-ichi; Kobayashi, Kei; Matsushige, Kazumi
  • Applied Physics Letters, Vol. 101, Issue 12
  • DOI: 10.1063/1.4754289

Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers
journal, July 2015

  • Long, Christian J.; Cannara, Rachel J.
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926431

In situ Stiffness Adjustment of AFM Probes by Two Orders of Magnitude
journal, April 2016

  • de Laat, Marcel; Pérez Garza, Héctor; Ghatkesar, Murali
  • Sensors, Vol. 16, Issue 4
  • DOI: 10.3390/s16040523

Calibration of rectangular atomic force microscope cantilevers
journal, October 1999

  • Sader, John E.; Chon, James W. M.; Mulvaney, Paul
  • Review of Scientific Instruments, Vol. 70, Issue 10
  • DOI: 10.1063/1.1150021

Encased cantilevers for low-noise force and mass sensing in liquids
conference, January 2014

  • Ziegler, D.; Klaassen, A.; Bahri, D.
  • 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)
  • DOI: 10.1109/MEMSYS.2014.6765590

True atomic resolution in liquid by frequency-modulation atomic force microscopy
journal, July 2005

  • Fukuma, Takeshi; Kobayashi, Kei; Matsushige, Kazumi
  • Applied Physics Letters, Vol. 87, Issue 3
  • DOI: 10.1063/1.1999856

What is the Young's Modulus of Silicon?
journal, April 2010

  • Hopcroft, Matthew A.; Nix, William D.; Kenny, Thomas W.
  • Journal of Microelectromechanical Systems, Vol. 19, Issue 2
  • DOI: 10.1109/JMEMS.2009.2039697

Some design considerations on the electrostatically actuated microstructures
journal, April 2004


Generalized closed-form models for pull-in analysis of micro cantilever beams subjected to partial electrostatic load
journal, October 2012


A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams
journal, February 2005

  • Chowdhury, S.; Ahmadi, M.; Miller, W. C.
  • Journal of Micromechanics and Microengineering, Vol. 15, Issue 4
  • DOI: 10.1088/0960-1317/15/4/012

Comparison of calibration methods for atomic-force microscopy cantilevers
journal, December 2002


A virtual instrument to standardise the calibration of atomic force microscope cantilevers
journal, September 2016

  • Sader, John E.; Borgani, Riccardo; Gibson, Christopher T.
  • Review of Scientific Instruments, Vol. 87, Issue 9
  • DOI: 10.1063/1.4962866

Some design considerations on the electrostatically actuated microstructures
journal, April 2004


Generalized closed-form models for pull-in analysis of micro cantilever beams subjected to partial electrostatic load
journal, October 2012


Ultra-Sensitive Imaging and Interfacial Analysis of Patterned Hydrophilic SAM Surfaces Using Energy Dissipation Chemical Force Microscopy
journal, May 2005

  • Ashby, Paul D.; Lieber, Charles M.
  • Journal of the American Chemical Society, Vol. 127, Issue 18
  • DOI: 10.1021/ja0453127

Micro‐fabricated piezoelectric cantilever for atomic force microscopy
journal, November 1996

  • Watanabe, Shunji; Fujii, Toru
  • Review of Scientific Instruments, Vol. 67, Issue 11
  • DOI: 10.1063/1.1147290

Optical excitation of nanoelectromechanical oscillators
journal, May 2005

  • Ilic, B.; Krylov, S.; Aubin, K.
  • Applied Physics Letters, Vol. 86, Issue 19
  • DOI: 10.1063/1.1919395

True atomic resolution in liquid by frequency-modulation atomic force microscopy
journal, July 2005

  • Fukuma, Takeshi; Kobayashi, Kei; Matsushige, Kazumi
  • Applied Physics Letters, Vol. 87, Issue 3
  • DOI: 10.1063/1.1999856

Investigation of fluid cell resonances in intermittent contact mode atomic force microscopy
journal, July 2007

  • Kokavecz, J.; Mechler, A.
  • Applied Physics Letters, Vol. 91, Issue 2
  • DOI: 10.1063/1.2753104

Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid
journal, December 2008

  • Carrasco, C.; Ares, P.; de Pablo, P. J.
  • Review of Scientific Instruments, Vol. 79, Issue 12
  • DOI: 10.1063/1.3053369

Studies of vibrating atomic force microscope cantilevers in liquid
journal, October 1996

  • Schäffer, T. E.; Cleveland, J. P.; Ohnesorge, F.
  • Journal of Applied Physics, Vol. 80, Issue 7
  • DOI: 10.1063/1.363308

Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor
journal, August 1997

  • Edwards, Hal; Taylor, Larry; Duncan, Walter
  • Journal of Applied Physics, Vol. 82, Issue 3
  • DOI: 10.1063/1.365936

A virtual instrument to standardise the calibration of atomic force microscope cantilevers
journal, September 2016

  • Sader, John E.; Borgani, Riccardo; Gibson, Christopher T.
  • Review of Scientific Instruments, Vol. 87, Issue 9
  • DOI: 10.1063/1.4962866

Single-chip mechatronic microsystem for surface imaging and force response studies
journal, November 2004

  • Hafizovic, S.; Barrettino, D.; Volden, T.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 49
  • DOI: 10.1073/pnas.0405725101

Comparison of calibration methods for atomic-force microscopy cantilevers
journal, December 2002


High spatial resolution Kelvin probe force microscopy with coaxial probes
journal, February 2012


A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams
journal, February 2005

  • Chowdhury, S.; Ahmadi, M.; Miller, W. C.
  • Journal of Micromechanics and Microengineering, Vol. 15, Issue 4
  • DOI: 10.1088/0960-1317/15/4/012

DMCMN: In Depth Characterization and Control of AFM Cantilevers With Integrated Sensing and Actuation
journal, November 2009

  • Fantner, Georg E.; Burns, Daniel J.; Belcher, Angela M.
  • Journal of Dynamic Systems, Measurement, and Control, Vol. 131, Issue 6
  • DOI: 10.1115/1.4000378

Scanning attractive force microscope using photothermal vibration
journal, March 1991

  • Umeda, N.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 9, Issue 2
  • DOI: 10.1116/1.585187

In situ Stiffness Adjustment of AFM Probes by Two Orders of Magnitude
journal, April 2016

  • de Laat, Marcel; Pérez Garza, Héctor; Ghatkesar, Murali
  • Sensors, Vol. 16, Issue 4
  • DOI: 10.3390/s16040523

Works referencing / citing this record:

Wideband Magnetic Excitation System for Atomic Force Microscopy Cantilevers with Megahertz-Order Resonance Frequency
journal, June 2020