skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Electrolytes for Si-Graphite Composite Electrodes

Abstract

The performance of Si-graphite/Li cells and Si-graphite/NMC111 cells has been investigated in 1.2 M LiPF 6 /EC:DEC (1/1, w/w) with different electrolyte additives including LiNO 3, FEC, and MEC. The addition of additives into electrolytes result in a significant improvement in capacity retention compared to the standard electrolyte for Si-graphite/Li cells. The cells cycled with electrolyte containing 0.5 wt% LiNO 3, 5–10 wt% MEC or 10 wt% FEC have high capacity retention, at least 88%, while the cells cycled with standard electrolyte have lower capacity retention, 64%, after 100 cycles. Investigation of Si-graphite/NCM111 cells reveals that the cells cycled in electrolyte containing 0.5 wt% LiNO 3 have better capacity retention than cells cycled with 10 wt% FEC, 57.9% vs. 44.6%, respectively. The combination of 10% MEC and LiNO 3 further improves the capacity retention of the Si-graphite/NCM111 full cells to 79.9% after 100 cycles which is highest among the electrolytes investigated. Ex-situ surface analyses by XPS and IR-ATR have been conducted to provide a fundamental understanding the composition of the solid-electrolyte interphase (SEI) and its correlation to cycling performance

Authors:
; ORCiD logo
Publication Date:
Research Org.:
Brown Univ., Providence, RI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1460138
Alternate Identifier(s):
OSTI ID: 1499267
Grant/Contract Number:  
SC0007074
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 165 Journal Issue: 10; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Electrolyte; lithium ion battery; solid electrolyte interphase

Citation Formats

Nguyen, Cao Cuong, and Lucht, Brett L. Development of Electrolytes for Si-Graphite Composite Electrodes. United States: N. p., 2018. Web. doi:10.1149/2.0621810jes.
Nguyen, Cao Cuong, & Lucht, Brett L. Development of Electrolytes for Si-Graphite Composite Electrodes. United States. doi:10.1149/2.0621810jes.
Nguyen, Cao Cuong, and Lucht, Brett L. Fri . "Development of Electrolytes for Si-Graphite Composite Electrodes". United States. doi:10.1149/2.0621810jes.
@article{osti_1460138,
title = {Development of Electrolytes for Si-Graphite Composite Electrodes},
author = {Nguyen, Cao Cuong and Lucht, Brett L.},
abstractNote = {The performance of Si-graphite/Li cells and Si-graphite/NMC111 cells has been investigated in 1.2 M LiPF6 /EC:DEC (1/1, w/w) with different electrolyte additives including LiNO3, FEC, and MEC. The addition of additives into electrolytes result in a significant improvement in capacity retention compared to the standard electrolyte for Si-graphite/Li cells. The cells cycled with electrolyte containing 0.5 wt% LiNO3, 5–10 wt% MEC or 10 wt% FEC have high capacity retention, at least 88%, while the cells cycled with standard electrolyte have lower capacity retention, 64%, after 100 cycles. Investigation of Si-graphite/NCM111 cells reveals that the cells cycled in electrolyte containing 0.5 wt% LiNO3 have better capacity retention than cells cycled with 10 wt% FEC, 57.9% vs. 44.6%, respectively. The combination of 10% MEC and LiNO3 further improves the capacity retention of the Si-graphite/NCM111 full cells to 79.9% after 100 cycles which is highest among the electrolytes investigated. Ex-situ surface analyses by XPS and IR-ATR have been conducted to provide a fundamental understanding the composition of the solid-electrolyte interphase (SEI) and its correlation to cycling performance},
doi = {10.1149/2.0621810jes},
journal = {Journal of the Electrochemical Society},
number = 10,
volume = 165,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1149/2.0621810jes

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Voltage profile plots for the first cycle (a), dQ/dV plots (b and c) for the first charge in region of 0.2V to 2V. The curves in dQ/dV are plotted offset in Y-axis to avoid the overlap between curves.

Save / Share:

Works referenced in this record:

Reversible Cycling of Crystalline Silicon Powder
journal, January 2007

  • Obrovac, M. N.; Krause, L. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402112

Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO 3 -Contained Electrolyte
journal, January 2012

  • Zhang, Sheng S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.002207jes

Vibrational spectrum of PVDF and its interpretation
journal, October 2004


Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power
journal, August 2004


Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries
journal, December 2013

  • Leung, Kevin; Rempe, Susan B.; Foster, Michael E.
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.092401jes

Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries
journal, January 2004

  • Ryu, Ji Heon; Kim, Jae Woo; Sung, Yung-Eun
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 10, p. A306-A309
  • DOI: 10.1149/1.1792242

Dependence of LiNO 3 decomposition on cathode binders in Li–S batteries
journal, August 2015


Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Methylene ethylene carbonate: Novel additive to improve the high temperature performance of lithium ion batteries
journal, June 2012


Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries
journal, August 2015

  • Young, Benjamin T.; Heskett, David R.; Nguyen, Cao Cuong
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 36
  • DOI: 10.1021/acsami.5b04845

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes
journal, January 2014

  • Chevrier, Vincent L.; Liu, Li; Le, Dinh Ba
  • Journal of The Electrochemical Society, Vol. 161, Issue 5
  • DOI: 10.1149/2.066405jes

Improved cycling performance of Si nanoparticle anodes via incorporation of methylene ethylene carbonate
journal, May 2016


Exceptional Electrochemical Performance of Si-Nanowires in 1,3-Dioxolane Solutions: A Surface Chemical Investigation
journal, March 2012

  • Etacheri, Vinodkumar; Geiger, Uzi; Gofer, Yossi
  • Langmuir, Vol. 28, Issue 14
  • DOI: 10.1021/la300306v

Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries
journal, January 2014

  • Nguyen, Cao Cuong; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0731412jes

Electrolyte Reactions with the Surface of High Voltage LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Cathodes for Lithium-Ion Batteries
journal, January 2010

  • Yang, Li; Ravdel, Boris; Lucht, Brett L.
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 8
  • DOI: 10.1149/1.3428515

Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries
journal, March 2006

  • Xu, Kang; Zhuang, Guorong V.; Allen, Jan L.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 15
  • DOI: 10.1021/jp0601522

25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
journal, August 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Nix, William D.
  • Advanced Materials, Vol. 25, Issue 36
  • DOI: 10.1002/adma.201301795

Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
journal, December 2008

  • Kim, Hyunjung; Han, Byunghee; Choo, Jaebum
  • Angewandte Chemie International Edition, Vol. 47, Issue 52, p. 10151-10154
  • DOI: 10.1002/anie.200804355

Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study
journal, August 2005

  • Dedryvère, R.; Gireaud, L.; Grugeon, S.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 33
  • DOI: 10.1021/jp051626k

Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
journal, November 2011


Electrochemical and Infrared Studies of the Reduction of Organic Carbonates
journal, January 2001

  • Zhang, Xuerong; Kostecki, Robert; Richardson, Thomas J.
  • Journal of The Electrochemical Society, Vol. 148, Issue 12
  • DOI: 10.1149/1.1415547

Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries
journal, January 2016

  • Jung, Roland; Metzger, Michael; Haering, Dominik
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0951608jes

Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode
journal, October 2006


Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Inoue, Atsuyoshi
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785795

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Surface phenomena of high energy Li(Ni1/3Co1/3Mn1/3)O2/graphite cells at high temperature and high cutoff voltages
journal, December 2014


A new finding on the role of LiNO3 in lithium-sulfur battery
journal, August 2016


High Energy Density Calendered Si Alloy/Graphite Anodes
journal, January 2014

  • Du, Zhijia; Dunlap, R. A.; Obrovac, M. N.
  • Journal of The Electrochemical Society, Vol. 161, Issue 10
  • DOI: 10.1149/2.0941410jes

Infrared spectra of ground graphite
journal, April 1971

  • Friedel, Robert A.; Carlson, Gerald L.
  • The Journal of Physical Chemistry, Vol. 75, Issue 8
  • DOI: 10.1021/j100678a021

Studies of the Capacity Fade Mechanisms of LiCoO 2 /Si-Alloy: Graphite Cells
journal, January 2016

  • Petibon, R.; Chevrier, V. L.; Aiken, C. P.
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0191607jes

Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
journal, December 2011

  • Etacheri, Vinodkumar; Haik, Ortal; Goffer, Yossi
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la203712s

Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li 1.03 (Ni 0.5 Co 0.2 Mn 0.3 ) 0.97 O 2 /Silicon-Graphite Full Cells
journal, January 2016

  • Klett, Matilda; Gilbert, James A.; Trask, Stephen E.
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0271606jes

XPS study of SiO thin films and SiO-metal interfaces
journal, August 1989


What Makes Fluoroethylene Carbonate Different?
journal, June 2015

  • Shkrob, Ilya A.; Wishart, James F.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b03591

Spectroscopic Characterization of Surface Films Formed on Edge Plane Graphite in Ethylene Carbonate-Based Electrolytes Containing Film-Forming Additives
journal, January 2012

  • Tsubouchi, Shigetaka; Domi, Yasuhiro; Doi, Takayuki
  • Journal of The Electrochemical Society, Vol. 159, Issue 11
  • DOI: 10.1149/2.028211jes

Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation
journal, November 2016


The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes
journal, May 2002


The Effect of Interactions and Reduction Products of LiNO 3 , the Anti-Shuttle Agent, in Li-S Battery Systems
journal, December 2014

  • Rosenman, Ariel; Elazari, Ran; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0861503jes

Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies
journal, January 2016


A Comparative Study of Vinylene Carbonate and Fluoroethylene Carbonate Additives for LiCoO 2 /Graphite Pouch Cells
journal, January 2014

  • Wang, David Yaohui; Sinha, N. N.; Burns, J. C.
  • Journal of The Electrochemical Society, Vol. 161, Issue 4
  • DOI: 10.1149/2.001404jes

    Works referencing / citing this record:

    High areal capacity battery electrodes enabled by segregated nanotube networks
    journal, June 2019


    High areal capacity battery electrodes enabled by segregated nanotube networks
    journal, June 2019