skip to main content


This content will become publicly available on February 26, 2019

Title: NMR Methodologies for the Detection and Quantification of Nanostructural Defects in Silicone Networks

Here, we present and discuss a sensitive spectroscopic means of detecting and quantifying network defects within a series of polysiloxane elastomers through a novel application of 19F solution state nuclear magnetic resonance (NMR). Polysiloxanes are the most utilized non-carbon polymeric material today. Their final network structure is complex, hierarchical, and often ill-defined due to modification. Characterization of these materials with respect to starting and age-dependent network structure is obfuscated by the intractable nature of polysiloxane network elastomers. We report a synthetic strategy for selectively tagging chain-end silanols with an organofluorine compound, which may then be conveniently and quantitatively measured as a function of structure and environment by means of 19F NMR. This study represents a new and sensitive means of directly quantifying aspects of network architecture in polysiloxane materials and has the potential to be a powerful new tool for the spectroscopic assessment of structural dynamic response in polysiloxane networks.
 [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0024-9297; 890349
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Additional Journal Information:
Journal Volume: 51; Journal Issue: 5; Journal ID: ISSN 0024-9297
American Chemical Society
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
OSTI Identifier: