DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aqueous Superparamagnetic Magnetite Dispersions with Ultrahigh Initial Magnetic Susceptibilities

Abstract

Superparamagnetic nanoparticles with a high initial magneti susceptibility χo are of great interest in a wide variety of chemical, biomedical, electronic, and subsurface energy applications. In order to achieve the theoretically predicted increase in χo with the cube of the magnetic diameter, new synthetic techniques are needed to control the crystal structure, particularly for magnetite nanoparticles larger than 10 nm. Aqueous magnetite dispersions (Fe3O4) with a χo of 3.3 (dimensionless SI units) at 1.9 vol %, over 3- to 5-fold greater than those reported previously, were produced in a one-pot synthesis at 210 °C and ambient pressure via thermal decomposition of Fe(II) acetate in triethylene glycol (TEG). The rapid nucleation and focused growth with an unusually high precursor-to-solvent molar ratio of 1:12 led to primary particles with a volume average diameter of 16 nm and low polydispersity according to TEM. The morphology was a mixture of stoichiometric and substoichiometric magnetite according to X-ray diffraction (XRD) and Mössbauer spectroscopy. Finally, the increase in χo with the cube of magnetic diameter as well as a saturation magnetization approaching the theoretical limit may be attributed to the highly crystalline structure and very small nonmagnetic layer (~1 nm) with disordered spin orientation on themore » surface.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [2];  [3];  [3];  [1];  [1];  [1];  [1];  [4]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Texas, Austin, TX (United States). McKetta Dept. of Chemical Engineering
  2. Boston Univ., MA (United States). Dept. of Chemistry
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  4. Univ. of Texas, Austin, TX (United States). Advanced Energy Consortium & Bureau of Economic Geology
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Welch Foundation
OSTI Identifier:
1459893
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Langmuir
Additional Journal Information:
Journal Volume: 34; Journal Issue: 2; Journal ID: ISSN 0743-7463
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; dispersion; magnetic susceptibility; magnetite; nucleation and growth; superparamagnetic

Citation Formats

Fei, Yunping, Iqbal, Muhammad, Kong, Seong D., Xue, Zheng, McFadden, Charles P., Guillet, Jesse L., Doerrer, Linda H., Alp, Esen E., Bi, Wenli, Lu, Yi, Dandamudi, Chola B., Ranganath, Prashant J., Javier, Kevin J., Ahmadian, Mohsen, Ellison, Christopher J., and Johnston, Keith P. Aqueous Superparamagnetic Magnetite Dispersions with Ultrahigh Initial Magnetic Susceptibilities. United States: N. p., 2017. Web. doi:10.1021/acs.langmuir.7b03702.
Fei, Yunping, Iqbal, Muhammad, Kong, Seong D., Xue, Zheng, McFadden, Charles P., Guillet, Jesse L., Doerrer, Linda H., Alp, Esen E., Bi, Wenli, Lu, Yi, Dandamudi, Chola B., Ranganath, Prashant J., Javier, Kevin J., Ahmadian, Mohsen, Ellison, Christopher J., & Johnston, Keith P. Aqueous Superparamagnetic Magnetite Dispersions with Ultrahigh Initial Magnetic Susceptibilities. United States. https://doi.org/10.1021/acs.langmuir.7b03702
Fei, Yunping, Iqbal, Muhammad, Kong, Seong D., Xue, Zheng, McFadden, Charles P., Guillet, Jesse L., Doerrer, Linda H., Alp, Esen E., Bi, Wenli, Lu, Yi, Dandamudi, Chola B., Ranganath, Prashant J., Javier, Kevin J., Ahmadian, Mohsen, Ellison, Christopher J., and Johnston, Keith P. Wed . "Aqueous Superparamagnetic Magnetite Dispersions with Ultrahigh Initial Magnetic Susceptibilities". United States. https://doi.org/10.1021/acs.langmuir.7b03702. https://www.osti.gov/servlets/purl/1459893.
@article{osti_1459893,
title = {Aqueous Superparamagnetic Magnetite Dispersions with Ultrahigh Initial Magnetic Susceptibilities},
author = {Fei, Yunping and Iqbal, Muhammad and Kong, Seong D. and Xue, Zheng and McFadden, Charles P. and Guillet, Jesse L. and Doerrer, Linda H. and Alp, Esen E. and Bi, Wenli and Lu, Yi and Dandamudi, Chola B. and Ranganath, Prashant J. and Javier, Kevin J. and Ahmadian, Mohsen and Ellison, Christopher J. and Johnston, Keith P.},
abstractNote = {Superparamagnetic nanoparticles with a high initial magneti susceptibility χo are of great interest in a wide variety of chemical, biomedical, electronic, and subsurface energy applications. In order to achieve the theoretically predicted increase in χo with the cube of the magnetic diameter, new synthetic techniques are needed to control the crystal structure, particularly for magnetite nanoparticles larger than 10 nm. Aqueous magnetite dispersions (Fe3O4) with a χo of 3.3 (dimensionless SI units) at 1.9 vol %, over 3- to 5-fold greater than those reported previously, were produced in a one-pot synthesis at 210 °C and ambient pressure via thermal decomposition of Fe(II) acetate in triethylene glycol (TEG). The rapid nucleation and focused growth with an unusually high precursor-to-solvent molar ratio of 1:12 led to primary particles with a volume average diameter of 16 nm and low polydispersity according to TEM. The morphology was a mixture of stoichiometric and substoichiometric magnetite according to X-ray diffraction (XRD) and Mössbauer spectroscopy. Finally, the increase in χo with the cube of magnetic diameter as well as a saturation magnetization approaching the theoretical limit may be attributed to the highly crystalline structure and very small nonmagnetic layer (~1 nm) with disordered spin orientation on the surface.},
doi = {10.1021/acs.langmuir.7b03702},
journal = {Langmuir},
number = 2,
volume = 34,
place = {United States},
year = {Wed Dec 20 00:00:00 EST 2017},
month = {Wed Dec 20 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Representative TEM images of TEG functionalized IONPs, (a-c) with different precursor ratios, 1:12 1:22 and 1:33 respectively, (d) IONPs at precursor ratio of 1:12, (e) high resolution TEM image of IONPs and the inset shows the lattice fringes (f) XRD spectra of IONPs with silica coating for amore » Fe(OAc)2-to-solvent ratio of 1:12 (Sample D in Table 1).« less

Save / Share:

Works referenced in this record:

Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals
journal, November 2006


Thermoresponsive Magnetic Nanoparticles for Seawater Desalination
journal, October 2013

  • Zhao, Qipeng; Chen, Ningping; Zhao, Dieling
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 21
  • DOI: 10.1021/am403719s

Inorganic Nanoparticles for MRI Contrast Agents
journal, June 2009

  • Na, Hyon Bin; Song, In Chan; Hyeon, Taeghwan
  • Advanced Materials, Vol. 21, Issue 21, p. 2133-2148
  • DOI: 10.1002/adma.200802366

Magnetic nanoparticles in MR imaging and drug delivery☆
journal, August 2008


Applications beyond data storage
journal, October 2005

  • Reiss, Günter; Hütten, Andreas
  • Nature Materials, Vol. 4, Issue 10
  • DOI: 10.1038/nmat1494

Iron Oxide Nanoparticles Grafted with Sulfonated Copolymers are Stable in Concentrated Brine at Elevated Temperatures and Weakly Adsorb on Silica
journal, January 2013

  • Bagaria, Hitesh G.; Xue, Zheng; Neilson, Bethany M.
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 8
  • DOI: 10.1021/am4003974

Crosswell Magnetic Sensing of Superparamagnetic Nanoparticles for Subsurface Applications
journal, October 2015

  • Rahmani, Amir Reza; Bryant, Steve; Huh, Chun
  • SPE Journal, Vol. 20, Issue 05
  • DOI: 10.2118/166140-PA

Control of magnetite primary particle size in aqueous dispersions of nanoclusters for high magnetic susceptibilities
journal, January 2016


Superparamagnetic Magnetite Colloidal Nanocrystal Clusters
journal, June 2007

  • Ge, Jianping; Hu, Yongxing; Biasini, Maurizio
  • Angewandte Chemie International Edition, Vol. 46, Issue 23
  • DOI: 10.1002/anie.200700197

Magnetic properties and magneto-birefringence of magnetic fluids
journal, July 2000


Measurements of particle size distribution parameters in ferrofluids
journal, September 1978


Controlled Clustering and Enhanced Stability of Polymer-Coated Magnetic Nanoparticles
journal, May 2005

  • Ditsch, Andre; Laibinis, Paul E.; Wang, Daniel I. C.
  • Langmuir, Vol. 21, Issue 13
  • DOI: 10.1021/la047057+

Susceptibility measurements on a fractionated aggregate-free ferrofluid
journal, May 2002

  • Ewijk, G. A. van; Vroege, G. J.; Philipse, A. P.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 19
  • DOI: 10.1088/0953-8984/14/19/315

Superparamagnetic Colloids: Controlled Synthesis and Niche Applications
journal, January 2007


Size-Controlled Synthesis of Magnetite Nanoparticles
journal, July 2002

  • Sun, Shouheng; Zeng, Hao
  • Journal of the American Chemical Society, Vol. 124, Issue 28
  • DOI: 10.1021/ja026501x

Formation of Magnetite Nanoparticles at Low Temperature: From Superparamagnetic to Stable Single Domain Particles
journal, March 2013


Preparation of aqueous magnetic liquids in alkaline and acidic media
journal, March 1981


Ultra-large-scale syntheses of monodisperse nanocrystals
journal, November 2004

  • Park, Jongnam; An, Kwangjin; Hwang, Yosun
  • Nature Materials, Vol. 3, Issue 12
  • DOI: 10.1038/nmat1251

Magnetic, Electronic, and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale
journal, November 2004

  • Redl, Franz X.; Black, Charles T.; Papaefthymiou, Georgia C.
  • Journal of the American Chemical Society, Vol. 126, Issue 44
  • DOI: 10.1021/ja046808r

Simple synthesis of superparamagnetic magnetite nanoparticles as highly efficient contrast agent
journal, March 2013


Synthesis of Monodisperse Spherical Nanocrystals
journal, June 2007

  • Park, Jongnam; Joo, Jin; Kwon, Soon Gu
  • Angewandte Chemie International Edition, Vol. 46, Issue 25
  • DOI: 10.1002/anie.200603148

Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols
journal, January 2007


Formation Mechanisms of Iron Oxide Nanoparticles in Different Nonaqueous Media
journal, February 2012

  • Grabs, Ilka-Marina; Bradtmöller, Christian; Menzel, Dirk
  • Crystal Growth & Design, Vol. 12, Issue 3
  • DOI: 10.1021/cg201563h

Structural and Magnetic Properties of Triethylene Glycol Stabilized Monodisperse Fe3O4 Nanoparticles
journal, May 2012

  • Günay, Merva; Baykal, Abdülhadi; Sözeri, Hüseyin
  • Journal of Superconductivity and Novel Magnetism, Vol. 25, Issue 7
  • DOI: 10.1007/s10948-012-1627-9

Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol)
journal, January 2009

  • Barrera, Carola; Herrera, Adriana P.; Rinaldi, Carlos
  • Journal of Colloid and Interface Science, Vol. 329, Issue 1
  • DOI: 10.1016/j.jcis.2008.09.071

Synthesis of Magnetic Nanocrystals by Thermal Decomposition in Glycol Media: Effect of Process Variables and Mechanistic Study
journal, June 2012

  • Miguel-Sancho, Nuria; Bomati-Miguel, Oscar; Roca, Alejandro G.
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 25
  • DOI: 10.1021/ie3002974

Evolution of an Ensemble of Nanoparticles in a Colloidal Solution:  Theoretical Study
journal, December 2001

  • Talapin, Dmitri V.; Rogach, Andrey L.; Haase, Markus
  • The Journal of Physical Chemistry B, Vol. 105, Issue 49
  • DOI: 10.1021/jp012229m

Influence of Ligand–Precursor Molar Ratio on the Size Evolution of Modifiable Iron Oxide Nanoparticles
journal, February 2013

  • Qi, Bin; Ye, Longfei; Stone, Roland
  • The Journal of Physical Chemistry C, Vol. 117, Issue 10
  • DOI: 10.1021/jp311509v

One-step reverse precipitation synthesis of water-dispersible superparamagnetic magnetite nanoparticles
journal, March 2012


Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity
journal, July 2010

  • Kralj, Slavko; Makovec, Darko; Čampelj, Stanislav
  • Journal of Magnetism and Magnetic Materials, Vol. 322, Issue 13
  • DOI: 10.1016/j.jmmm.2009.12.038

Preparation and properties of water-based magnetic fluids
journal, May 2008


Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size
journal, November 2011

  • Starowicz, Maria; Starowicz, Paweł; Żukrowski, Jan
  • Journal of Nanoparticle Research, Vol. 13, Issue 12
  • DOI: 10.1007/s11051-011-0631-5

Structure and magnetic properties of iron oxide nanopowders
journal, January 2013

  • Lukashova, N. V.; Savchenko, A. G.; Yagodkin, Yu. D.
  • Metal Science and Heat Treatment, Vol. 54, Issue 9-10
  • DOI: 10.1007/s11041-013-9547-2

Effect of Nature and Particle Size on Properties of Uniform Magnetite and Maghemite Nanoparticles
journal, November 2007

  • Roca, Alejandro G.; Marco, Jose F.; Morales, María del Puerto
  • The Journal of Physical Chemistry C, Vol. 111, Issue 50
  • DOI: 10.1021/jp075133m

Synthesis of very fine maghemite particles
journal, August 1995


Morphology-controlled synthesis of highly crystalline Fe 3 O 4 and CoFe 2 O 4 nanoparticles using a facile thermal decomposition method
journal, January 2016

  • Eom, Yunji; Abbas, Mohamed; Noh, HeeYoon
  • RSC Advances, Vol. 6, Issue 19
  • DOI: 10.1039/C5RA27649G

Core-shell Fe 3 O 4 @SiO 2 nanoparticles synthesized with well-dispersed hydrophilic Fe 3 O 4 seeds
journal, January 2011

  • Hui, Chao; Shen, Chengmin; Tian, Jifa
  • Nanoscale, Vol. 3, Issue 2
  • DOI: 10.1039/C0NR00497A

Anisotropic magnetic field observed at 300 K in citrate-coated iron oxide nanoparticles: effect of counterions
journal, December 2015

  • Misra, Sushil K.; Li, Lin; Mukherjee, Sudip
  • Journal of Nanoparticle Research, Vol. 17, Issue 12
  • DOI: 10.1007/s11051-015-3301-1

Effect of Grafted Copolymer Composition on Iron Oxide Nanoparticle Stability and Transport in Porous Media at High Salinity
journal, May 2014

  • Xue, Zheng; Foster, Edward; Wang, Yonggang
  • Energy & Fuels, Vol. 28, Issue 6
  • DOI: 10.1021/ef500340h

High temperature stability and low adsorption of sub-100 nm magnetite nanoparticles grafted with sulfonated copolymers on Berea sandstone in high salinity brine
journal, May 2017

  • Iqbal, Muhammad; Lyon, Bonnie A.; Ureña-Benavides, Esteban E.
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 520
  • DOI: 10.1016/j.colsurfa.2017.01.080

Works referencing / citing this record:

Agglomeration Dynamics of Magnetite Nanoparticles at Low Magnetic Field Gradient: Magnetic Field Dependence of Agglomeration
journal, May 2018

  • Jin, Daeseong; Kim, Hackjin
  • Bulletin of the Korean Chemical Society, Vol. 39, Issue 6
  • DOI: 10.1002/bkcs.11463

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.