DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Calibrationless rotating Lorentz-force flowmeters for low flow rate applications

Abstract

A 'weighted magnetic bearing' has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under 'frictionless' conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. As a result, this paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Princeton Univ., Princeton, NJ (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1459562
Grant/Contract Number:  
AC02-09CH11466
Resource Type:
Accepted Manuscript
Journal Name:
Measurement Science and Technology
Additional Journal Information:
Journal Volume: 29; Journal Issue: 7; Journal ID: ISSN 0957-0233
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; low-friction bearings; Lorentz-force velocimetry; flowmeter; liquid metal

Citation Formats

Hvasta, M. G., Dudt, D., Fisher, A. E., and Kolemen, E. Calibrationless rotating Lorentz-force flowmeters for low flow rate applications. United States: N. p., 2018. Web. doi:10.1088/1361-6501/aac3b5.
Hvasta, M. G., Dudt, D., Fisher, A. E., & Kolemen, E. Calibrationless rotating Lorentz-force flowmeters for low flow rate applications. United States. https://doi.org/10.1088/1361-6501/aac3b5
Hvasta, M. G., Dudt, D., Fisher, A. E., and Kolemen, E. Tue . "Calibrationless rotating Lorentz-force flowmeters for low flow rate applications". United States. https://doi.org/10.1088/1361-6501/aac3b5. https://www.osti.gov/servlets/purl/1459562.
@article{osti_1459562,
title = {Calibrationless rotating Lorentz-force flowmeters for low flow rate applications},
author = {Hvasta, M. G. and Dudt, D. and Fisher, A. E. and Kolemen, E.},
abstractNote = {A 'weighted magnetic bearing' has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under 'frictionless' conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. As a result, this paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.},
doi = {10.1088/1361-6501/aac3b5},
journal = {Measurement Science and Technology},
number = 7,
volume = 29,
place = {United States},
year = {Tue May 29 00:00:00 EDT 2018},
month = {Tue May 29 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: A depiction of a rotating Lorentz-force flowmeter. In the ‘side view’, the flow is directed out of the page.

Save / Share:

Works referenced in this record:

Experimental calibration procedures for rotating Lorentz-force flowmeters
journal, July 2017

  • Hvasta, M. G.; Slighton, N. T.; Kolemen, E.
  • Measurement Science and Technology, Vol. 28, Issue 8
  • DOI: 10.1088/1361-6501/aa781b

Some Recent Developments in the Field of Measuring Techniques and Instrumentation for Liquid Metal Flows
journal, April 2011

  • Eckert, Sven; Buchenau, Dominique; Gerbeth, Gunter
  • Journal of Nuclear Science and Technology, Vol. 48, Issue 4
  • DOI: 10.1080/18811248.2011.9711724

Performance enhancement of a Lorentz force velocimeter using a buoyancy-compensated magnet system
journal, June 2015


A Novel Contactless Flow Rate Measurement Device for Weakly Conducting Fluids Based on Lorentz Force Velocimetry
journal, August 2013

  • Halbedel, Bernd; Resagk, Christian; Wegfrass, Andrè
  • Flow, Turbulence and Combustion, Vol. 92, Issue 1-2
  • DOI: 10.1007/s10494-013-9505-5

A universal noncontact flowmeter for liquids
journal, May 2012

  • Wegfrass, André; Diethold, Christian; Werner, Michael
  • Applied Physics Letters, Vol. 100, Issue 19
  • DOI: 10.1063/1.4714899

Influence of the flow profile to Lorentz force velocimetry for weakly conducting fluids—an experimental validation
journal, November 2016


The magnetic flywheel flow meter: Theoretical and experimental contributions
journal, June 2014

  • Buchenau, D.; Galindo, V.; Eckert, S.
  • Applied Physics Letters, Vol. 104, Issue 22
  • DOI: 10.1063/1.4881330

Optimal magnet configurations for Lorentz force velocimetry in low conductivity fluids
journal, May 2013


Calibration of the Lorentz force flowmeter
journal, June 2011


Spatially resolved measurements in a liquid metal flow with Lorentz force velocimetry
journal, June 2013


Theory of the Lorentz force flowmeter
journal, August 2007


Lorentz force velocimetry based on time-of-flight measurements
journal, December 2010

  • Viré, Axelle; Knaepen, Bernard; Thess, André
  • Physics of Fluids, Vol. 22, Issue 12
  • DOI: 10.1063/1.3517294

Single-magnet rotary flowmeter for liquid metals
journal, August 2011

  • Priede, Jānis; Buchenau, Dominique; Gerbeth, Gunter
  • Journal of Applied Physics, Vol. 110, Issue 3
  • DOI: 10.1063/1.3610440

Electromagnetic suspension and levitation
journal, April 1981


Electromagnetic suspension and levitation
journal, January 1982

  • Jayawant, B. V.
  • IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews, Vol. 129, Issue 8
  • DOI: 10.1049/ip-a-1.1982.0092

Revolving magnet wheels with permanent magnets
journal, January 1996

  • Fujii, Nobuo; Ogawa, Kokichi; Matsumoto, Toshio
  • Electrical Engineering in Japan, Vol. 116, Issue 1
  • DOI: 10.1002/eej.4391160110

Force on a Rectangular Coil Moving above a Conducting Slab
journal, April 1972

  • Reitz, John R.; Davis, L. C.
  • Journal of Applied Physics, Vol. 43, Issue 4
  • DOI: 10.1063/1.1661359

Eddy Currents in Finite Conducting Sheets
journal, October 1971

  • Davis, L. C.; Reitz, John R.
  • Journal of Applied Physics, Vol. 42, Issue 11
  • DOI: 10.1063/1.1659742

Eddy current effects in plain and hollow cylinders spinning inside homogeneous magnetic fields: Application to magnetic resonance
journal, October 2012

  • Aubert, G.; Jacquinot, J. -F.; Sakellariou, D.
  • The Journal of Chemical Physics, Vol. 137, Issue 15
  • DOI: 10.1063/1.4756948

Windage Power Loss Modeling of a Smooth Rotor Supported by Homopolar Active Magnetic Bearings
journal, March 2008

  • Raymond, M. Saint; Kasarda, M. E. F.; Allaire, P. E.
  • Journal of Tribology, Vol. 130, Issue 2
  • DOI: 10.1115/1.2806203

Application of IR imaging for free-surface velocity measurement in liquid-metal systems
journal, January 2017

  • Hvasta, M. G.; Kolemen, E.; Fisher, A.
  • Review of Scientific Instruments, Vol. 88, Issue 1
  • DOI: 10.1063/1.4973421

A liquid metal flume for free surface magnetohydrodynamic experiments
journal, January 2008

  • Nornberg, M. D.; Ji, H.; Peterson, J. L.
  • Review of Scientific Instruments, Vol. 79, Issue 9
  • DOI: 10.1063/1.2976109

GaInSn usage in the research laboratory
journal, May 2008

  • Morley, N. B.; Burris, J.; Cadwallader, L. C.
  • Review of Scientific Instruments, Vol. 79, Issue 5
  • DOI: 10.1063/1.2930813

Thermophysical Properties of the Liquid Ga–In–Sn Eutectic Alloy
journal, February 2014

  • Plevachuk, Yuriy; Sklyarchuk, Vasyl; Eckert, Sven
  • Journal of Chemical & Engineering Data, Vol. 59, Issue 3
  • DOI: 10.1021/je400882q

Calibrationless rotating Lorentz-force flowmeters for low flow rate applications
dataset, January 2018

  • Hvasta, M.; Dudt, D.; Fisher, A.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  • DOI: 10.11578/1562007

Single-magnet rotary flowmeter for liquid metals
text, January 2010


Works referencing / citing this record:

Liquid Metal Diagnostics
journal, November 2019


Numerical calibration of a Lorentz force particle analyzer
journal, November 2018


Calibrationless rotating Lorentz-force flowmeters for low flow rate applications
dataset, January 2018

  • Hvasta, M.; Dudt, D.; Fisher, A.
  • Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  • DOI: 10.11578/1562007

Numerical Solutions of Heat Transfer for Magnetohydrodynamic Jeffery-Hamel Flow Using Spectral Homotopy Analysis Method
journal, September 2019

  • Mahmood, Asad; Md Basir, Md; Ali, Umair
  • Processes, Vol. 7, Issue 9
  • DOI: 10.3390/pr7090626

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.