DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid

Abstract

The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a theoretical model based on the interfacial excess thermodynamic properties. The correction parameter (δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05 for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force (Δμ) corresponding to available simulated nucleation conditions is also calculated by combining the simulated data with a classical density functional theory. In this paper, we show that the classical nucleation theory is capable of predicting the nucleation barrier with excellent agreement to the simulated results when the curvature correction to the interfacial free energy is accounted for.

Authors:
 [1]; ORCiD logo [2]
  1. Univ. of Ruhuna, Matara (Sri Lanka). Dept. of Engineering Technology; Ames Lab. and Iowa State Univ., Ames, IA (United States)
  2. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Ames Lab. and Iowa State Univ., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1459540
Alternate Identifier(s):
OSTI ID: 1438283
Report Number(s):
IS-J-9695
Journal ID: ISSN 0021-9606; TRN: US1901565
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 148; Journal Issue: 20; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; heavy fermion systems; crystallography; interfaces; thermodynamic properties; crystallization; density functional theory; gas liquid interfaces; entropy; free energy

Citation Formats

Gunawardana, K. G. S. H., and Song, Xueyu. Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid. United States: N. p., 2018. Web. doi:10.1063/1.5021944.
Gunawardana, K. G. S. H., & Song, Xueyu. Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid. United States. https://doi.org/10.1063/1.5021944
Gunawardana, K. G. S. H., and Song, Xueyu. Tue . "Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid". United States. https://doi.org/10.1063/1.5021944. https://www.osti.gov/servlets/purl/1459540.
@article{osti_1459540,
title = {Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid},
author = {Gunawardana, K. G. S. H. and Song, Xueyu},
abstractNote = {The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a theoretical model based on the interfacial excess thermodynamic properties. The correction parameter (δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05 for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force (Δμ) corresponding to available simulated nucleation conditions is also calculated by combining the simulated data with a classical density functional theory. In this paper, we show that the classical nucleation theory is capable of predicting the nucleation barrier with excellent agreement to the simulated results when the curvature correction to the interfacial free energy is accounted for.},
doi = {10.1063/1.5021944},
journal = {Journal of Chemical Physics},
number = 20,
volume = 148,
place = {United States},
year = {Tue May 22 00:00:00 EDT 2018},
month = {Tue May 22 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: A spherical crystalline cluster coexists with its liquid at $T$ = 0.64. The length of the cubic simulation box is 48.4433$σ$ and the total number of particles is 99159. The crystalline cluster has approximately 17000 particles.

Save / Share:

Works referenced in this record:

Prediction of absolute crystal-nucleation rate in hard-sphere colloids
journal, February 2001

  • Auer, Stefan; Frenkel, Daan
  • Nature, Vol. 409, Issue 6823
  • DOI: 10.1038/35059035

Direct Calculation of the Crystal−Melt Interfacial Free Energy via Molecular Dynamics Computer Simulation
journal, September 2005

  • Laird, Brian B.; Davidchack, Ruslan L.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 38
  • DOI: 10.1021/jp0530754

Theoretical calculation of the melting curve of Cu-Zr binary alloys
journal, November 2014


Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems
journal, May 1986

  • Broughton, J. Q.; Gilmer, G. H.
  • The Journal of Chemical Physics, Vol. 84, Issue 10
  • DOI: 10.1063/1.449884

889. A study of the supercooling of drops of some molecular liquids
journal, January 1952

  • Thomas, D. G.; Staveley, L. A. K.
  • Journal of the Chemical Society (Resumed)
  • DOI: 10.1039/jr9520004569

Surface free energy and stress of a Lennard-Jones crystal
journal, June 1983


Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy
journal, October 2001

  • Auer, Stefan; Frenkel, Daan
  • Nature, Vol. 413, Issue 6857
  • DOI: 10.1038/35099513

Finite-Size Effects on Liquid-Solid Phase Coexistence and the Estimation of Crystal Nucleation Barriers
journal, January 2015


Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs–Cahn integration
journal, September 2009

  • Laird, Brian B.; Davidchack, Ruslan L.; Yang, Yang
  • The Journal of Chemical Physics, Vol. 131, Issue 11
  • DOI: 10.1063/1.3231693

State between Liquid and Crystal: Locally Crystalline but with the Structure Factor of a Liquid
journal, April 2016


Microscopic Observation of the Solidification of Small Metal Droplets
journal, August 1950

  • Turnbull, D.; Cech, R. E.
  • Journal of Applied Physics, Vol. 21, Issue 8
  • DOI: 10.1063/1.1699763

Solid–liquid interfacial free energy of small colloidal hard-sphere crystals
journal, October 2003

  • Cacciuto, A.; Auer, S.; Frenkel, D.
  • The Journal of Chemical Physics, Vol. 119, Issue 14
  • DOI: 10.1063/1.1607307

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


The Effect of Droplet Size on Surface Tension
journal, March 1949

  • Tolman, Richard C.
  • The Journal of Chemical Physics, Vol. 17, Issue 3
  • DOI: 10.1063/1.1747247

Density functional theory of a curved liquid–vapour interface: evaluation of the rigidity constants
journal, May 2013


Kinetics of Solidification of Supercooled Liquid Mercury Droplets
journal, March 1952

  • Turnbull, David
  • The Journal of Chemical Physics, Vol. 20, Issue 3
  • DOI: 10.1063/1.1700435

Simulation of homogeneous crystal nucleation close to coexistence
journal, January 1996

  • ten Wolde, Pieter-Rein; Ruiz-Montero, Maria J.; Frenkel, Daan
  • Faraday Discussions, Vol. 104
  • DOI: 10.1039/fd9960400093

Systematic analysis of local atomic structure combined with 3D computer graphics
journal, March 1994


The anisotropic free energy of the Lennard-Jones crystal-melt interface
journal, August 2003

  • Morris, James R.; Song, Xueyu
  • The Journal of Chemical Physics, Vol. 119, Issue 7
  • DOI: 10.1063/1.1591725

Structural characterization of deformed crystals by analysis of common atomic neighborhood
journal, September 2007

  • Tsuzuki, Helio; Branicio, Paulo S.; Rino, José P.
  • Computer Physics Communications, Vol. 177, Issue 6
  • DOI: 10.1016/j.cpc.2007.05.018

Freezing of a Lennard-Jones Fluid: From Nucleation to Spinodal Regime
journal, September 2006


Interfacial curvature free energy, the Kelvin relation, and vapor–liquid nucleation rate
journal, March 1997

  • McGraw, Robert; Laaksonen, Ari
  • The Journal of Chemical Physics, Vol. 106, Issue 12
  • DOI: 10.1063/1.473527

Formation of Crystal Nuclei in Liquid Metals
journal, October 1950


Size-Dependent Surface Free Energy and Tolman-Corrected Droplet Nucleation of TIP4P/2005 Water
journal, December 2013

  • Joswiak, Mark N.; Duff, Nathan; Doherty, Michael F.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 24
  • DOI: 10.1021/jz402226p

Test of classical nucleation theory and mean first-passage time formalism on crystallization in the Lennard-Jones liquid
journal, January 2009

  • Lundrigan, Sarah E. M.; Saika-Voivod, Ivan
  • The Journal of Chemical Physics, Vol. 131, Issue 10
  • DOI: 10.1063/1.3216867

Tolman length and rigidity constants of the Lennard-Jones fluid
journal, February 2015

  • Wilhelmsen, Øivind; Bedeaux, Dick; Reguera, David
  • The Journal of Chemical Physics, Vol. 142, Issue 6
  • DOI: 10.1063/1.4907588

Systematic Improvement of Classical Nucleation Theory
text, January 2012


Works referencing / citing this record:

Response to “Comment on ‘Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid’” [J. Chem. Phys. 151, 017101 (2019)]
journal, July 2019

  • Gunawardana, K. G. S. H.; Song, Xueyu
  • The Journal of Chemical Physics, Vol. 151, Issue 1
  • DOI: 10.1063/1.5108755

Interfacial free energy of a liquid-solid interface: Its change with curvature
journal, October 2019

  • Montero de Hijes, P.; Espinosa, Jorge R.; Sanz, Eduardo
  • The Journal of Chemical Physics, Vol. 151, Issue 14
  • DOI: 10.1063/1.5121026

Entropy and the Tolman Parameter in Nucleation Theory
journal, July 2019

  • Schmelzer, Jürn W. P.; Abyzov, Alexander S.; Baidakov, Vladimir G.
  • Entropy, Vol. 21, Issue 7
  • DOI: 10.3390/e21070670

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.