skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SiO 2-Enhanced Structural Stability and Strong Adhesion with a New Binder of Konjac Glucomannan Enables Stable Cycling of Silicon Anodes for Lithium-Ion Batteries

Abstract

Silicon-based anodes with high theoretical capacity have intriguing potential applications for next-generation high-energy lithium-ion batteries, but suffer from huge volumetric change that causes pulverization of electrodes. Rational design and construction of effective electrode structures combined with versatile binders remain a significant challenge. In this paper, a unique natural binder of konjac glucomannan (KGM) is developed and an amorphous protective layer of SiO 2 is fabricated on the surface of Si nanoparticles (Si@SiO 2) to enhance the adhesion. Benefiting from a plethora of hydroxyl groups, the KGM binder with inherently high adhesion and superior mechanical properties provides abundant contact sites to active materials. Molecular mechanics simulations and experimental results demonstrate that the enhanced adhesion between KGM and Si@SiO 2 can bond the particles tightly to form a robust electrode. In addition to bridging KGM molecules, the SiO 2-functionalized surface may serve as a buffer layer to alleviate the stresses of Si nanoparticles resulting from the volume change. The as-fabricated KGM/Si@SiO 2 electrode exhibits outstanding structural stability upon long-term cycles. Finally, a highly reversible capacity of 1278 mAh g -1 can be achieved over 1000 cycles at a current density of 2 A g -1, and the capacity decay is as smallmore » as 0.056% per cycle.« less

Authors:
 [1];  [2];  [1];  [3];  [4];  [4];  [5]; ORCiD logo [1]
  1. Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Materials Processing and Die & Mould Technology. School of Materials Science and Engineering
  2. Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Materials Processing and Die & Mould Technology. School of Materials Science and Engineering; Chinese Academy of Sciences (CAS), Shanghai (China). Shanghai Inst. of Ceramics. State Key Lab. of High Performance Ceramics and Superfine Microstructure; Univ. of Chinese Academy of Sciences, Beijing (China)
  3. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy
  4. Chinese Academy of Sciences (CAS), Suzhou (China). Suzhou Inst. of Nano-Tech and Nano-Bionics
  5. Chinese Academy of Sciences (CAS), Shanghai (China). Shanghai Inst. of Ceramics. State Key Lab. of High Performance Ceramics and Superfine Microstructure; Univ. of Chinese Academy of Sciences, Beijing (China)
Publication Date:
Research Org.:
Ames Lab. and Iowa State Univ., Ames, IA (United States); Huazhong Univ. of Science and Technology, Wuhan (China); Chinese Academy of Sciences (CAS), Shanghai (China); Chinese Academy of Sciences (CAS), Suzhou (China)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Natural Science Foundation of China (NNSFC); Ministry of Science and Technology of the People's Republic of China
OSTI Identifier:
1459534
Alternate Identifier(s):
OSTI ID: 1457194
Report Number(s):
IS-J-9570
Journal ID: ISSN 1614-6832
Grant/Contract Number:  
AC02-07CH11358; 51772116; 51522205; 51472098; 2015AA034601
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 24; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; binder; interfacial adhesion; konjac glucomannan; lithium-ion batteries; silicon anodes

Citation Formats

Guo, Songtao, Li, Heng, Li, Yaqian, Han, Yong, Chen, Kebei, Xu, Gengzhao, Zhu, Yingjie, and Hu, Xianluo. SiO2-Enhanced Structural Stability and Strong Adhesion with a New Binder of Konjac Glucomannan Enables Stable Cycling of Silicon Anodes for Lithium-Ion Batteries. United States: N. p., 2018. Web. doi:10.1002/aenm.201800434.
Guo, Songtao, Li, Heng, Li, Yaqian, Han, Yong, Chen, Kebei, Xu, Gengzhao, Zhu, Yingjie, & Hu, Xianluo. SiO2-Enhanced Structural Stability and Strong Adhesion with a New Binder of Konjac Glucomannan Enables Stable Cycling of Silicon Anodes for Lithium-Ion Batteries. United States. doi:10.1002/aenm.201800434.
Guo, Songtao, Li, Heng, Li, Yaqian, Han, Yong, Chen, Kebei, Xu, Gengzhao, Zhu, Yingjie, and Hu, Xianluo. Mon . "SiO2-Enhanced Structural Stability and Strong Adhesion with a New Binder of Konjac Glucomannan Enables Stable Cycling of Silicon Anodes for Lithium-Ion Batteries". United States. doi:10.1002/aenm.201800434. https://www.osti.gov/servlets/purl/1459534.
@article{osti_1459534,
title = {SiO2-Enhanced Structural Stability and Strong Adhesion with a New Binder of Konjac Glucomannan Enables Stable Cycling of Silicon Anodes for Lithium-Ion Batteries},
author = {Guo, Songtao and Li, Heng and Li, Yaqian and Han, Yong and Chen, Kebei and Xu, Gengzhao and Zhu, Yingjie and Hu, Xianluo},
abstractNote = {Silicon-based anodes with high theoretical capacity have intriguing potential applications for next-generation high-energy lithium-ion batteries, but suffer from huge volumetric change that causes pulverization of electrodes. Rational design and construction of effective electrode structures combined with versatile binders remain a significant challenge. In this paper, a unique natural binder of konjac glucomannan (KGM) is developed and an amorphous protective layer of SiO2 is fabricated on the surface of Si nanoparticles (Si@SiO2) to enhance the adhesion. Benefiting from a plethora of hydroxyl groups, the KGM binder with inherently high adhesion and superior mechanical properties provides abundant contact sites to active materials. Molecular mechanics simulations and experimental results demonstrate that the enhanced adhesion between KGM and Si@SiO2 can bond the particles tightly to form a robust electrode. In addition to bridging KGM molecules, the SiO2-functionalized surface may serve as a buffer layer to alleviate the stresses of Si nanoparticles resulting from the volume change. The as-fabricated KGM/Si@SiO2 electrode exhibits outstanding structural stability upon long-term cycles. Finally, a highly reversible capacity of 1278 mAh g-1 can be achieved over 1000 cycles at a current density of 2 A g-1, and the capacity decay is as small as 0.056% per cycle.},
doi = {10.1002/aenm.201800434},
journal = {Advanced Energy Materials},
number = 24,
volume = 8,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Schematic illustration of lithiation and delithiation for the KGM/Si@SiO2. The surface oxide layer of SiO2 on Si nanoparticles enhances the interfacial adhesion with the KGM binder and protects the Si cores. (b) The structures of KGM/SiO2, KGM/Si(111) and SA/Si(111) model systems from our molecular mechanics simulation. Themore » order of the adhesion energies of these three structures is indicated.« less

Save / Share:

Works referenced in this record:

Highly Stretchable Conductive Glue for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
journal, November 2017

  • Wang, Lei; Liu, Tiefeng; Peng, Xiang
  • Advanced Functional Materials, Vol. 28, Issue 3
  • DOI: 10.1002/adfm.201704858

Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes
journal, September 2011

  • McDowell, Matthew T.; Lee, Seok Woo; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl202630n

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries
journal, July 2017


Optical and electrochemical characterization of self-assembled octadecyltrichlorosilane monolayer on modified silicon electrode
journal, November 2002


Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries
journal, February 2014


A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes
journal, February 2016


Sodium Carboxymethyl Cellulose
journal, January 2007

  • Li, Jing; Lewis, R. B.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 2
  • DOI: 10.1149/1.2398725

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

An All-Integrated Anode via Interlinked Chemical Bonding between Double-Shelled-Yolk-Structured Silicon and Binder for Lithium-Ion Batteries
journal, October 2017


Lithiation of SiO 2 in Li-Ion Batteries: In Situ Transmission Electron Microscopy Experiments and Theoretical Studies
journal, November 2014

  • Zhang, Yuefei; Li, Yujie; Wang, Zhenyu
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl503776u

Influence of mold and substrate material combinations on nanoimprint lithography process: MD simulation approach
journal, May 2014


High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries
journal, January 2017

  • Wei, Liangming; Hou, Zhongyu
  • J. Mater. Chem. A, Vol. 5, Issue 42
  • DOI: 10.1039/C7TA05195F

Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries
journal, January 2016

  • Chen, Chao; Lee, Sang Ha; Cho, Misuk
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 4
  • DOI: 10.1021/acsami.5b10673

Laser Porosificated Silicon Anodes for Lithium Ion Batteries
journal, September 2017

  • Sämann, Christian; Kelesiadou, Katerina; Hosseinioun, Seyedeh Sheida
  • Advanced Energy Materials, Vol. 8, Issue 1
  • DOI: 10.1002/aenm.201701705

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

A Green and Facile Way to Prepare Granadilla-Like Silicon-Based Anode Materials for Li-Ion Batteries
journal, December 2015

  • Zhang, Lei; Rajagopalan, Ranjusha; Guo, Haipeng
  • Advanced Functional Materials, Vol. 26, Issue 3
  • DOI: 10.1002/adfm.201503777

A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries
journal, May 2015

  • Liu, Jie; Zhang, Qian; Zhang, Tao
  • Advanced Functional Materials, Vol. 25, Issue 23
  • DOI: 10.1002/adfm.201500589

Hyperbranched β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries
journal, January 2014

  • Jeong, You Kyeong; Kwon, Tae-woo; Lee, Inhwa
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404237j

Preparation of konjac glucomannan hydrogels as DNA-controlled release matrix
journal, April 2008


Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
journal, January 2018


Blue-Shifting Hydrogen Bonds
journal, November 2000

  • Hobza, Pavel; Havlas, Zdeněk
  • Chemical Reviews, Vol. 100, Issue 11
  • DOI: 10.1021/cr990050q

Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiO x @graphene nanosheets as high performance lithium-ion battery anodes
journal, January 2015

  • Niu, Jin; Zhang, Su; Niu, Yue
  • Journal of Materials Chemistry A, Vol. 3, Issue 39
  • DOI: 10.1039/C5TA05386B

Novel conductive binder for high-performance silicon anodes in lithium ion batteries
journal, June 2017


Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density
journal, July 2017

  • Li, Jun-Tao; Wu, Zhan-Yu; Lu, Yan-Qiu
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201701185

Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries
journal, July 2017


A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries
journal, July 2012

  • Koo, Bonjae; Kim, Hyunjung; Cho, Younghyun
  • Angewandte Chemie International Edition, Vol. 51, Issue 35
  • DOI: 10.1002/anie.201201568

Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries
journal, July 2014

  • Song, Jiangxuan; Zhou, Mingjiong; Yi, Ran
  • Advanced Functional Materials, Vol. 24, Issue 37
  • DOI: 10.1002/adfm.201401269

Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries
journal, August 2011


Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films
journal, June 2015


Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%
journal, January 2017

  • Jin, Yang; Li, Sa; Kushima, Akihiro
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE02685K

Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes
journal, January 2015

  • Kim, Sang-Mo; Kim, Myeong Hak; Choi, Sung Yeol
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00472A

Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes
journal, October 2016


High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder
journal, January 2015

  • Chen, Zheng; Wang, Chao; Lopez, Jeffrey
  • Advanced Energy Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aenm.201401826

Dual-functional gum arabic binder for silicon anodes in lithium ion batteries
journal, March 2015


Dynamic Cross-Linking of Polymeric Binders Based on Host–Guest Interactions for Silicon Anodes in Lithium Ion Batteries
journal, October 2015


Si-containing precursors for Si-based anode materials of Li-ion batteries: A review
journal, July 2016


Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries
journal, October 2015

  • Chen, Yu; Liu, Lifeng; Xiong, Jie
  • Advanced Functional Materials, Vol. 25, Issue 43
  • DOI: 10.1002/adfm.201503206

Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte
journal, January 2017

  • Lowe, B. M.; Maekawa, Y.; Shibuta, Y.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 4
  • DOI: 10.1039/C6CP04101A

Silicon Composite Electrodes with Dynamic Ionic Bonding
journal, May 2017

  • Kang, Sen; Yang, Ke; White, Scott R.
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201700045

Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes
journal, January 2016


Acacia Senegal -Inspired Bifunctional Binder for Longevity of Lithium-Sulfur Batteries
journal, August 2015


Critical Thickness of SiO 2 Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Li-Ion Batteries
journal, June 2013


Delicate Structural Control of Si–SiO x –C Composite via High-Speed Spray Pyrolysis for Li-Ion Battery Anodes
journal, February 2017


A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
journal, September 2011


Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries
journal, January 2010

  • Park, Cheol-Min; Choi, Woongchul; Hwa, Yoon
  • Journal of Materials Chemistry, Vol. 20, Issue 23
  • DOI: 10.1039/b923926j

Directing Silicon–Graphene Self-Assembly as a Core/Shell Anode for High-Performance Lithium-Ion Batteries
journal, January 2013

  • Zhu, Yuanhua; Liu, Wen; Zhang, Xinyue
  • Langmuir, Vol. 29, Issue 2
  • DOI: 10.1021/la304371d

Systematic Molecular-Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries
journal, October 2014

  • Kwon, Tae-woo; Jeong, You Kyeong; Lee, Inhwa
  • Advanced Materials, Vol. 26, Issue 47
  • DOI: 10.1002/adma.201402950

Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries
journal, March 2017

  • Chen, Shuangqiang; Shen, Laifa; van Aken, Peter A.
  • Advanced Materials, Vol. 29, Issue 21
  • DOI: 10.1002/adma.201605650

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries
journal, December 2012

  • Ryou, Myung-Hyun; Kim, Jangbae; Lee, Inhwa
  • Advanced Materials, Vol. 25, Issue 11
  • DOI: 10.1002/adma.201203981

Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery
journal, September 2017


Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes
journal, January 2015

  • Jeong, You Kyeong; Kwon, Tae-woo; Lee, Inhwa
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C5EE00239G

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries
journal, August 2016


Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries
journal, January 2017

  • Bie, Yitian; Yang, Jun; Nuli, Yanna
  • Journal of Materials Chemistry A, Vol. 5, Issue 5
  • DOI: 10.1039/C6TA09522D

A Deep Reduction and Partial Oxidation Strategy for Fabrication of Mesoporous Si Anode for Lithium Ion Batteries
journal, January 2016


    Works referencing / citing this record:

    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j

    Carbon-based materials for lithium-ion capacitors
    journal, January 2019

    • Wang, Xiaojun; Liu, Lili; Niu, Zhiqiang
    • Materials Chemistry Frontiers, Vol. 3, Issue 7
    • DOI: 10.1039/c9qm00062c

    Carbon-based materials for lithium-ion capacitors
    journal, January 2019

    • Wang, Xiaojun; Liu, Lili; Niu, Zhiqiang
    • Materials Chemistry Frontiers, Vol. 3, Issue 7
    • DOI: 10.1039/c9qm00062c

    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j