skip to main content

DOE PAGESDOE PAGES

Title: Enhancement of CO 2 binding and mechanical properties upon diamine functionalization of M 2(dobpdc) metal–organic frameworks

The family of diamine-appended metal–organic frameworks exemplified by compounds of the type mmen–M 2(dobpdc) (mmen = N,N'-dimethylethylenediamine; M = Mg, Mn, Fe, Co, Zn; dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are adsorbents with significant potential for carbon capture, due to their high working capacities and strong selectivity for CO 2 that stem from a cooperative adsorption mechanism. Herein, we use first-principles density functional theory (DFT) calculations to quantitatively investigate the role of mmen ligands in dictating the framework properties. Our van der Waals-corrected DFT calculations indicate that electrostatic interactions between ammonium carbamate units significantly enhance the CO 2 binding strength relative to the unfunctionalized frameworks. Additionally, our computed energetics show that mmen–M 2(dobpdc) materials can selectively adsorb CO 2 under humid conditions, in agreement with experimental observations. The calculations further predict an increase of 112% and 124% in the orientationally-averaged Young's modulus E and shear modulus G, respectively, for mmen–Zn 2(dobpdc) compared to Zn 2(dobpdc), revealing a dramatic enhancement of mechanical properties associated with diamine functionalization. Taken together, our calculations demonstrate how functionalization with mmen ligands can enhance framework gas adsorption and mechanical properties.
Authors:
ORCiD logo [1] ; ORCiD logo [2] ; ORCiD logo [3] ;  [1] ; ORCiD logo [4] ; ORCiD logo [5] ;  [6]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry; Univ. of California, Berkeley, CA (United States). Dept. of Physics
  2. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry. Materials Sciences Division
  5. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry. Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry; Univ. of California, Berkeley, CA (United States). Dept. of Physics. Kavli Energy Nanosciences Inst. at Berkeley
Publication Date:
Grant/Contract Number:
AC02-05CH11231; SC0001015
Type:
Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 9; Journal Issue: 23; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1459397

Lee, Jung-Hoon, Siegelman, Rebecca L., Maserati, Lorenzo, Rangel, Tonatiuh, Helms, Brett A., Long, Jeffrey R., and Neaton, Jeffrey B.. Enhancement of CO2 binding and mechanical properties upon diamine functionalization of M2(dobpdc) metal–organic frameworks. United States: N. p., Web. doi:10.1039/c7sc05217k.
Lee, Jung-Hoon, Siegelman, Rebecca L., Maserati, Lorenzo, Rangel, Tonatiuh, Helms, Brett A., Long, Jeffrey R., & Neaton, Jeffrey B.. Enhancement of CO2 binding and mechanical properties upon diamine functionalization of M2(dobpdc) metal–organic frameworks. United States. doi:10.1039/c7sc05217k.
Lee, Jung-Hoon, Siegelman, Rebecca L., Maserati, Lorenzo, Rangel, Tonatiuh, Helms, Brett A., Long, Jeffrey R., and Neaton, Jeffrey B.. 2018. "Enhancement of CO2 binding and mechanical properties upon diamine functionalization of M2(dobpdc) metal–organic frameworks". United States. doi:10.1039/c7sc05217k. https://www.osti.gov/servlets/purl/1459397.
@article{osti_1459397,
title = {Enhancement of CO2 binding and mechanical properties upon diamine functionalization of M2(dobpdc) metal–organic frameworks},
author = {Lee, Jung-Hoon and Siegelman, Rebecca L. and Maserati, Lorenzo and Rangel, Tonatiuh and Helms, Brett A. and Long, Jeffrey R. and Neaton, Jeffrey B.},
abstractNote = {The family of diamine-appended metal–organic frameworks exemplified by compounds of the type mmen–M2(dobpdc) (mmen = N,N'-dimethylethylenediamine; M = Mg, Mn, Fe, Co, Zn; dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are adsorbents with significant potential for carbon capture, due to their high working capacities and strong selectivity for CO2 that stem from a cooperative adsorption mechanism. Herein, we use first-principles density functional theory (DFT) calculations to quantitatively investigate the role of mmen ligands in dictating the framework properties. Our van der Waals-corrected DFT calculations indicate that electrostatic interactions between ammonium carbamate units significantly enhance the CO2 binding strength relative to the unfunctionalized frameworks. Additionally, our computed energetics show that mmen–M2(dobpdc) materials can selectively adsorb CO2 under humid conditions, in agreement with experimental observations. The calculations further predict an increase of 112% and 124% in the orientationally-averaged Young's modulus E and shear modulus G, respectively, for mmen–Zn2(dobpdc) compared to Zn2(dobpdc), revealing a dramatic enhancement of mechanical properties associated with diamine functionalization. Taken together, our calculations demonstrate how functionalization with mmen ligands can enhance framework gas adsorption and mechanical properties.},
doi = {10.1039/c7sc05217k},
journal = {Chemical Science},
number = 23,
volume = 9,
place = {United States},
year = {2018},
month = {5}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996
  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994

Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites
journal, March 2012

Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials
journal, August 2010
  • Farha, Omar K.; Hupp, Joseph T.
  • Accounts of Chemical Research, Vol. 43, Issue 8, p. 1166-1175
  • DOI: 10.1021/ar1000617

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999

An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal-Oxygen Chains
journal, October 2005
  • Dietzel, Pascal D. C.; Morita, Yusuke; Blom, Richard
  • Angewandte Chemie International Edition, Vol. 44, Issue 39, p. 6354-6358
  • DOI: 10.1002/anie.200501508

Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design
journal, January 2015
  • Lee, Kyuho; Howe, Joshua D.; Lin, Li-Chiang
  • Chemistry of Materials, Vol. 27, Issue 3, p. 668-678
  • DOI: 10.1021/cm502760q

Introduction to Metal–Organic Frameworks
journal, September 2011
  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Ab initiomolecular dynamics for liquid metals
journal, January 1993

Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network
journal, December 2011
  • Queen, Wendy L.; Brown, Craig M.; Britt, David K.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 50, p. 24915-24919
  • DOI: 10.1021/jp208529p

Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores
journal, August 2008
  • Caskey, Stephen R.; Wong-Foy, Antek G.; Matzger, Adam J.
  • Journal of the American Chemical Society, Vol. 130, Issue 33, p. 10870-10871
  • DOI: 10.1021/ja8036096

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011
  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996

Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994

Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature
journal, December 2005
  • Millward, Andrew R.; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 127, Issue 51, p. 17998-17999
  • DOI: 10.1021/ja0570032

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
journal, April 2012
  • McDonald, Thomas M.; Lee, Woo Ram; Mason, Jarad A.
  • Journal of the American Chemical Society, Vol. 134, Issue 16, p. 7056-7065
  • DOI: 10.1021/ja300034j

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013
  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Metal–organic frameworks: a new class of porous materials
journal, August 2004