On the Nanoscale Structure of KxFe2-yCh2 (Ch = S, Se): A Neutron Pair Distribution Function View
- Inst. of Electronic Structure and Laser (IESL), Foundation for Research and Technology- Hellas (FORTH), Vassilika Vouton, Heraklion (Greece)
- Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Scattering Division
Comparative exploration of the nanometer-scale atomic structure of KxFe2-yCh2 (Ch = S, Se) was performed using neutron total scattering-based atomic pair distribution function (PDF) analysis of 5 K powder diffraction data in relation to physical properties. Whereas KxFe2-ySe2 is a superconductor with a transition temperature of about 32 K, the isostructural sulphide analogue is not, which instead displays a spin glass semiconducting behavior at low temperatures. The PDF analysis explores phase separated and disordered structural models as candidate descriptors of the low temperature data. For both materials, the nanoscale structure is well described by the iron (Fe)-vacancy-disordered K2Fe5-yCh5 (I4/m) model containing excess Fe. An equally good description of the data is achieved by using a phase separated model comprised of I4/m vacancy-ordered and I4/mmm components. The I4/mmm component appears as a minority phase in the structure of both KxFe2-ySe2 and KxFe2-yS2, and with similar contribution, implying that the phase ratio is not a decisive factor influencing the lack of superconductivity in the latter. Comparison of structural parameters of the Fe-vacancy-disordered model indicates that the replacement of selenium (Se) by sulphur (S) results in an appreciable reduction in the Fe-Ch interatomic distances and anion heights, while simultaneously increasing the irregularity of FeCh4 tetrahedra, suggesting the more significant influence of these factors. Finally, structural features are also compared to the non-intercalated FeSe and FeS parent phases, providing further information for the discussion about the influence of the lattice degrees of freedom on the observed properties in layered iron chalcogenides.
- Research Organization:
- Brookhaven National Laboratory (BNL), Upton, NY (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- SC0012704
- OSTI ID:
- 1459171
- Report Number(s):
- BNL-206809-2018-JAAM; TRN: US1901547
- Journal Information:
- Condensed Matter, Vol. 3, Issue 3; ISSN 2410-3896
- Publisher:
- MDPICopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Appearance of superconductivity at the vacancy order-disorder boundary in
Fe Vacancy Order and Domain Distribution in A{sub x}Fe{sub 2−y}Se{sub 2}