DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions

Abstract

Here, we focus on simulation methodologies to obtain the critical micelle concentration (cmc) and equilibrium distribution of aggregate sizes in dilute surfactant solutions. Even though it is now relatively easy to obtain micellar aggregates in simulations starting from a fully dispersed state, several major challenges remain. In particular, the characteristic times of micelle reorganization and transfer of monomers from micelles to free solution for most systems of practical interest exceed currently accessible molecular dynamics time scales for atomistic surfactant models in explicit solvent. In addition, it is impractical to simulate highly dilute systems near the cmc. We have demonstrated a strong dependence of the free surfactant concentration (frequently, but incorrectly, taken to represent the cmc in simulations) on the overall concentration for ionic surfactants. We have presented a theoretical framework for making the necessary extrapolations to the cmc. We find that currently available atomistic force fields systematically underpredict experimental cmc’s, pointing to the need for the development of improved models. For strongly micellizing systems that exhibit strong hysteresis, implicit-solvent grand canonical Monte Carlo simulations represent an appealing alternative to atomistic or coarse-grained, explicit-solvent simulations. We summarize an approach that can be used to obtain quantitative, transferrable effective interactions and illustratemore » how this grand canonical approach can be used to interpret experimental scattering results.« less

Authors:
 [1];  [2]
  1. City Univ. (CUNY), NY (United States). College of Staten Island and Graduate Center and Dept. of Chemistry
  2. Princeton Univ., NJ (United States). Dept. of Chemical and Biological Engineering
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1159191
Alternate Identifier(s):
OSTI ID: 1459162
Grant/Contract Number:  
SC0002128; DMR-0819860
Resource Type:
Published Article
Journal Name:
Langmuir
Additional Journal Information:
Journal Name: Langmuir Journal Volume: 31 Journal Issue: 11; Journal ID: ISSN 0743-7463
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Jusufi, Arben, and Panagiotopoulos, Athanassios Z. Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions. United States: N. p., 2014. Web. doi:10.1021/la502227v.
Jusufi, Arben, & Panagiotopoulos, Athanassios Z. Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions. United States. https://doi.org/10.1021/la502227v
Jusufi, Arben, and Panagiotopoulos, Athanassios Z. Tue . "Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions". United States. https://doi.org/10.1021/la502227v.
@article{osti_1159191,
title = {Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions},
author = {Jusufi, Arben and Panagiotopoulos, Athanassios Z.},
abstractNote = {Here, we focus on simulation methodologies to obtain the critical micelle concentration (cmc) and equilibrium distribution of aggregate sizes in dilute surfactant solutions. Even though it is now relatively easy to obtain micellar aggregates in simulations starting from a fully dispersed state, several major challenges remain. In particular, the characteristic times of micelle reorganization and transfer of monomers from micelles to free solution for most systems of practical interest exceed currently accessible molecular dynamics time scales for atomistic surfactant models in explicit solvent. In addition, it is impractical to simulate highly dilute systems near the cmc. We have demonstrated a strong dependence of the free surfactant concentration (frequently, but incorrectly, taken to represent the cmc in simulations) on the overall concentration for ionic surfactants. We have presented a theoretical framework for making the necessary extrapolations to the cmc. We find that currently available atomistic force fields systematically underpredict experimental cmc’s, pointing to the need for the development of improved models. For strongly micellizing systems that exhibit strong hysteresis, implicit-solvent grand canonical Monte Carlo simulations represent an appealing alternative to atomistic or coarse-grained, explicit-solvent simulations. We summarize an approach that can be used to obtain quantitative, transferrable effective interactions and illustrate how this grand canonical approach can be used to interpret experimental scattering results.},
doi = {10.1021/la502227v},
journal = {Langmuir},
number = 11,
volume = 31,
place = {United States},
year = {Tue Sep 16 00:00:00 EDT 2014},
month = {Tue Sep 16 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/la502227v

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Sphere-to-Rod Transitions of Nonionic Surfactant Micelles in Aqueous Solution Modeled by Molecular Dynamics Simulations
journal, December 2011

  • Velinova, Maria; Sengupta, Durba; Tadjer, Alia V.
  • Langmuir, Vol. 27, Issue 23
  • DOI: 10.1021/la203055t

Solubilization in Mixed Micelles Studied by Molecular Dynamics Simulations and COSMOmic
journal, March 2014

  • Storm, Sandra; Jakobtorweihen, Sven; Smirnova, Irina
  • The Journal of Physical Chemistry B, Vol. 118, Issue 13
  • DOI: 10.1021/jp410636w

Transferable Potentials for Phase Equilibria. 3. Explicit-Hydrogen Description of Normal Alkanes
journal, June 1999

  • Chen, Bin; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 103, Issue 25
  • DOI: 10.1021/jp990822m

Modeling the Self-Assembly and Stability of DHPC Micelles Using Atomic Resolution and Coarse Grained MD Simulations
journal, April 2012

  • Kraft, Johan F.; Vestergaard, Mikkel; Schiøtt, Birgit
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 5
  • DOI: 10.1021/ct200921u

Electrostatic Screening and Charge Correlation Effects in Micellization of Ionic Surfactants
journal, May 2009

  • Jusufi, Arben; Hynninen, Antti-Pekka; Haataja, Mikko
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18
  • DOI: 10.1021/jp901032g

Implicit-Solvent Models for Micellization: Nonionic Surfactants and Temperature-Dependent Properties
journal, February 2011

  • Jusufi, Arben; Sanders, Samantha; Klein, Michael L.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 5
  • DOI: 10.1021/jp108107f

Coarse-grained molecular modeling of non-ionic surfactant self-assembly
journal, January 2008

  • Shinoda, Wataru; DeVane, Russell; Klein, Michael L.
  • Soft Matter, Vol. 4, Issue 12
  • DOI: 10.1039/b808701f

Molecular Dynamics Simulation and Thermodynamic Modeling of the Self-Assembly of the Triterpenoids Asiatic Acid and Madecassic Acid in Aqueous Solution
journal, February 2008

  • Stephenson, Brian C.; Goldsipe, Arthur; Blankschtein, Daniel
  • The Journal of Physical Chemistry B, Vol. 112, Issue 8
  • DOI: 10.1021/jp074310g

Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures: aggregate shape and local surfactant distribution
journal, January 2013

  • Chen, Jingfei; Hao, Jingcheng
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 15
  • DOI: 10.1039/c3cp43634a

A Definition of the Degree of Ionization of a Micelle Based on Its Aggregation Number
journal, July 2001

  • Bales, Barney L.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 29
  • DOI: 10.1021/jp004576m

Calculations of Critical Micelle Concentration by Dissipative Particle Dynamics Simulations: The Role of Chain Rigidity
journal, July 2013

  • Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 35
  • DOI: 10.1021/jp4042028

Prediction of the Critical Micelle Concentration of Nonionic Surfactants by Dissipative Particle Dynamics Simulations
journal, February 2013

  • Vishnyakov, Aleksey; Lee, Ming-Tsung; Neimark, Alexander V.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 5
  • DOI: 10.1021/jz400066k

Concentration dependent pathways in spontaneous self-assembly of unilamellar vesicles
journal, January 2011

  • Gummel, Jérémie; Sztucki, Michael; Narayanan, Theyencheri
  • Soft Matter, Vol. 7, Issue 12
  • DOI: 10.1039/c1sm05354j

Monte Carlo lattice simulation of amphiphilic systems in two and three dimensions
journal, August 1988

  • Larson, R. G.
  • The Journal of Chemical Physics, Vol. 89, Issue 3
  • DOI: 10.1063/1.455110

Thermodynamic Study of the Aggregation Behavior of Sodium n -Hexyl Sulfate in Aqueous Solution
journal, August 1999

  • Suárez, María J.; López-Fontán, José L.; Sarmiento, Félix
  • Langmuir, Vol. 15, Issue 16
  • DOI: 10.1021/la981759f

Molecular Dynamics Simulation of SDS and CTAB Micellization and Prediction of Partition Equilibria with COSMOmic
journal, September 2013

  • Storm, Sandra; Jakobtorweihen, Sven; Smirnova, Irina
  • Langmuir, Vol. 29, Issue 37
  • DOI: 10.1021/la402415b

Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelles in Water—The Effect of the Force Field
journal, March 2014

  • Tang, Xueming; Koenig, Peter H.; Larson, Ronald G.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 14
  • DOI: 10.1021/jp410689m

Growth of Sodium Dodecyl Sulfate Micelles with Detergent Concentration
journal, November 1995

  • Quina, Frank H.; Nassar, Patricia M.; Bonilha, Joao B. S.
  • The Journal of Physical Chemistry, Vol. 99, Issue 46
  • DOI: 10.1021/j100046a031

Estimation of the critical micelle concentrations and the aggregation numbers of sodium alkyl sulfates by capillary-type isotachophoresis
journal, July 1987

  • Ogino, K.; Kakihara, T.; Abe, M.
  • Colloid and Polymer Science, Vol. 265, Issue 7
  • DOI: 10.1007/BF01412776

Micellization and Phase Separation of Diblock and Triblock Model Surfactants
journal, April 2002

  • Panagiotopoulos, Athanassios Z.; Floriano, M. Antonio; Kumar, Sanat K.
  • Langmuir, Vol. 18, Issue 7
  • DOI: 10.1021/la0156513

Thermodynamics of Micelle Formation as a Function of Temperature: A High Sensitivity Titration Calorimetry Study
journal, July 1995

  • Paula, Stefan; Sues, Willy; Tuchtenhagen, Juergen
  • The Journal of Physical Chemistry, Vol. 99, Issue 30
  • DOI: 10.1021/j100030a019

Ionic Surfactant Aggregates in Saline Solutions: Sodium Dodecyl Sulfate (SDS) in the Presence of Excess Sodium Chloride (NaCl) or Calcium Chloride (CaCl 2 )
journal, April 2009

  • Sammalkorpi, Maria; Karttunen, Mikko; Haataja, Mikko
  • The Journal of Physical Chemistry B, Vol. 113, Issue 17
  • DOI: 10.1021/jp901228v

Molecular Dynamics Simulation of the Kinetics of Spontaneous Micelle Formation
journal, December 2000

  • Marrink, S. J.; Tieleman, D. P.; Mark, A. E.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 51
  • DOI: 10.1021/jp001898h

Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water:  Micellar Structural Characteristics and Counterion Distribution
journal, April 2002

  • Bruce, Chrystal D.; Berkowitz, Max L.; Perera, Lalith
  • The Journal of Physical Chemistry B, Vol. 106, Issue 15
  • DOI: 10.1021/jp013616z

General purpose molecular dynamics simulations fully implemented on graphics processing units
journal, May 2008

  • Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.
  • Journal of Computational Physics, Vol. 227, Issue 10
  • DOI: 10.1016/j.jcp.2008.01.047

Perspective on the Martini model
journal, January 2013

  • Marrink, Siewert J.; Tieleman, D. Peter
  • Chemical Society Reviews, Vol. 42, Issue 16
  • DOI: 10.1039/c3cs60093a

Modeling Self-Assembly of Silica/Surfactant Mesostructures in the Templated Synthesis of Nanoporous Solids
journal, February 2013

  • Pérez-Sánchez, Germán; Gomes, José R. B.; Jorge, Miguel
  • Langmuir, Vol. 29, Issue 7
  • DOI: 10.1021/la3046274

Kinetics of micellization from ultrasonic relaxation studies
journal, January 1974

  • Rassing, J.; Sams, P. J.; Wyn-Jones, E.
  • Journal of the Chemical Society, Faraday Transactions 2, Vol. 70
  • DOI: 10.1039/f29747001247

Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution
journal, August 1986

  • Jönsson, Bo; Edholm, Olle; Teleman, Olle
  • The Journal of Chemical Physics, Vol. 85, Issue 4
  • DOI: 10.1063/1.451122

Computer simulations of micellar systems
journal, March 2012


Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Atomistic Simulations of Micellization of Sodium Hexyl, Heptyl, Octyl, and Nonyl Sulfates
journal, February 2012

  • Sanders, Samantha A.; Sammalkorpi, Maria; Panagiotopoulos, Athanassios Z.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 8
  • DOI: 10.1021/jp209207p

Simulating water with rigid non-polarizable models: a general perspective
journal, January 2011

  • Vega, Carlos; Abascal, Jose L. F.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp22168j

Micelle Formation and the Hydrophobic Effect
journal, May 2004

  • Maibaum, Lutz; Dinner, Aaron R.; Chandler, David
  • The Journal of Physical Chemistry B, Vol. 108, Issue 21
  • DOI: 10.1021/jp037487t

Molecular‐thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants
journal, March 1990

  • Puvvada, Sudhakar; Blankschtein, Daniel
  • The Journal of Chemical Physics, Vol. 92, Issue 6
  • DOI: 10.1063/1.457829

Electrostatic correlations: from plasma to biology
journal, September 2002


Molecular dynamics study of a sodium octanoate micelle in aqueous solution
journal, February 1988

  • Watanabe, Kyoko; Ferrario, Mauro; Klein, Michael L.
  • The Journal of Physical Chemistry, Vol. 92, Issue 3
  • DOI: 10.1021/j100314a045

Coarse Grained Model for Semiquantitative Lipid Simulations
journal, January 2004

  • Marrink, Siewert J.; de Vries, Alex H.; Mark, Alan E.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 2
  • DOI: 10.1021/jp036508g

Micellization in Model Surfactant Systems
journal, April 1999

  • Floriano, M. Antonio; Caponetti, Eugenio; Panagiotopoulos, Athanassios Z.
  • Langmuir, Vol. 15, Issue 9
  • DOI: 10.1021/la9810206

Theory of surfactant self-assembly: a predictive molecular thermodynamic approach
journal, December 1991


Implicit Solvent Models for Micellization of Ionic Surfactants
journal, November 2008

  • Jusufi, Arben; Hynninen, Antti-Pekka; Panagiotopoulos, Athanassios Z.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 44
  • DOI: 10.1021/jp8043225

Coarse-Grained Molecular Dynamics Simulations of the Sphere to Rod Transition in Surfactant Micelles
journal, June 2011

  • Sangwai, Ashish V.; Sureshkumar, Radhakrishna
  • Langmuir, Vol. 27, Issue 11
  • DOI: 10.1021/la2006315

The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin
journal, March 1988

  • Jorgensen, William L.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 110, Issue 6
  • DOI: 10.1021/ja00214a001

Computer simulation of surfactant solutions
journal, March 2000


Self-Assembly of Charged Surfactants: Full Comparison of Molecular Simulations and Scattering Experiments
journal, December 2012

  • Jusufi, Arben; Kohlmeyer, Axel; Sztucki, Michael
  • Langmuir, Vol. 28, Issue 51
  • DOI: 10.1021/la304084a

The MARTINI Force Field:  Coarse Grained Model for Biomolecular Simulations
journal, July 2007

  • Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge
  • The Journal of Physical Chemistry B, Vol. 111, Issue 27
  • DOI: 10.1021/jp071097f

Self-Assembly and Bilayer–Micelle Transition of Fatty Acids Studied by Replica-Exchange Constant pH Molecular Dynamics
journal, November 2013

  • Morrow, Brian H.; Koenig, Peter H.; Shen, Jana K.
  • Langmuir, Vol. 29, Issue 48
  • DOI: 10.1021/la403398n

Thermodynamic theories of micellar and vesicular systems
journal, June 1997


Micellization behavior of coarse grained surfactant models
journal, March 2010

  • Sanders, Samantha A.; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 132, Issue 11
  • DOI: 10.1063/1.3358354

Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units
journal, January 2012

  • LeBard, David N.; Levine, Benjamin G.; Mertmann, Philipp
  • Soft Matter, Vol. 8, Issue 8
  • DOI: 10.1039/C1SM06787G

Surfactant Concentration Effects on Micellar Properties
journal, January 2012

  • Jusufi, Arben; LeBard, David N.; Levine, Benjamin G.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 3
  • DOI: 10.1021/jp2102989

Aggregation Behavior of a Lattice Model for Amphiphiles
journal, September 1997

  • Mackie, Allan D.; Panagiotopoulos, Athanassios Z.; Szleifer, Igal
  • Langmuir, Vol. 13, Issue 19
  • DOI: 10.1021/la961090h

Reverse micelles as microreactors
journal, July 1993


Simulations of Micellization of Sodium Hexyl Sulfate
journal, February 2011

  • Sammalkorpi, M.; Sanders, S.; Panagiotopoulos, A. Z.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 6
  • DOI: 10.1021/jp109882r

Surfactant association into micelles. An electrostatic approach
journal, November 1980

  • Gunnarsson, Gudmundur; Joensson, Bengt; Wennerstroem, Haakan
  • The Journal of Physical Chemistry, Vol. 84, Issue 23
  • DOI: 10.1021/j100460a029

Coarse-grained force field for ionic surfactants
journal, January 2011

  • Shinoda, Wataru; DeVane, Russell; Klein, Michael L.
  • Soft Matter, Vol. 7, Issue 13
  • DOI: 10.1039/c1sm05173c

A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems
journal, April 2011

  • Spaeth, Justin R.; Kevrekidis, Ioannis G.; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 134, Issue 16
  • DOI: 10.1063/1.3580293

Implicit Solvent Model Simulations of Surfactant Self-Assembly in Aqueous Solutions
journal, May 2010

  • Morisada, Shintaro; Shinto, Hiroyuki
  • The Journal of Physical Chemistry B, Vol. 114, Issue 19
  • DOI: 10.1021/jp100887g

Effective potentials for 1:1 electrolyte solutions incorporating dielectric saturation and repulsive hydration
journal, January 2007

  • Lenart, Philip J.; Jusufi, Arben; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 126, Issue 4
  • DOI: 10.1063/1.2431169

Instrumental developments for anomalous small-angle X-ray scattering from soft matter systems
journal, October 2010

  • Sztucki, Michael; Di Cola, Emanuela; Narayanan, Theyencheri
  • Journal of Applied Crystallography, Vol. 43, Issue 6
  • DOI: 10.1107/S002188981003298X