DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Iron Vacancies Accommodate Uranyl Incorporation into Hematite

Abstract

Radiotoxic uranium contamination in natural systems and nuclear waste containment can be sequestered by incorporation into naturally abundant iron (oxyhydr)oxides such as hematite (α-Fe2O3) during mineral growth. The stability and properties of the resulting uranium-doped material are impacted by the local coordination environment of incorporated uranium. While measurements of uranium coordination in hematite have been attempted using extended X-ray absorption fine structure (EXAFS) analysis, traditional shell-by-shell EXAFS fitting yields ambiguous results. We used hybrid functional ab initio molecular dynamics (AIMD) simulations for various defect configurations to generate synthetic EXAFS spectra which were combined with adsorbed uranyl spectra to fit experimental U L3-edge EXAFS for U6+-doped hematite. We discovered that the hematite crystal structure accommodates a trans-dioxo uranyl-like configuration for U6+ that substitutes for structural Fe3+, which requires two partially protonated Fe vacancies situated at opposing corner-sharing sites. Surprisingly, the best match to experiment included significant proportions of vacancy configurations other than the minimum-energy configuration, pointing to the importance of incorporation mechanisms and kinetics in determining the state of an impurity incorporated into a host phase under low temperature hydrothermal conditions.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo
  1. Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1459051
Alternate Identifier(s):
OSTI ID: 1508821
Grant/Contract Number:  
AC05-76RL01830; AC02-06CH11357; AC02-76SF00515
Resource Type:
Published Article
Journal Name:
Environmental Science and Technology
Additional Journal Information:
Journal Name: Environmental Science and Technology Journal Volume: 52 Journal Issue: 11; Journal ID: ISSN 0013-936X
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

McBriarty, Martin E., Kerisit, Sebastien, Bylaska, Eric J., Shaw, Samuel, Morris, Katherine, and Ilton, Eugene S. Iron Vacancies Accommodate Uranyl Incorporation into Hematite. United States: N. p., 2018. Web. doi:10.1021/acs.est.8b00297.
McBriarty, Martin E., Kerisit, Sebastien, Bylaska, Eric J., Shaw, Samuel, Morris, Katherine, & Ilton, Eugene S. Iron Vacancies Accommodate Uranyl Incorporation into Hematite. United States. https://doi.org/10.1021/acs.est.8b00297
McBriarty, Martin E., Kerisit, Sebastien, Bylaska, Eric J., Shaw, Samuel, Morris, Katherine, and Ilton, Eugene S. Mon . "Iron Vacancies Accommodate Uranyl Incorporation into Hematite". United States. https://doi.org/10.1021/acs.est.8b00297.
@article{osti_1459051,
title = {Iron Vacancies Accommodate Uranyl Incorporation into Hematite},
author = {McBriarty, Martin E. and Kerisit, Sebastien and Bylaska, Eric J. and Shaw, Samuel and Morris, Katherine and Ilton, Eugene S.},
abstractNote = {Radiotoxic uranium contamination in natural systems and nuclear waste containment can be sequestered by incorporation into naturally abundant iron (oxyhydr)oxides such as hematite (α-Fe2O3) during mineral growth. The stability and properties of the resulting uranium-doped material are impacted by the local coordination environment of incorporated uranium. While measurements of uranium coordination in hematite have been attempted using extended X-ray absorption fine structure (EXAFS) analysis, traditional shell-by-shell EXAFS fitting yields ambiguous results. We used hybrid functional ab initio molecular dynamics (AIMD) simulations for various defect configurations to generate synthetic EXAFS spectra which were combined with adsorbed uranyl spectra to fit experimental U L3-edge EXAFS for U6+-doped hematite. We discovered that the hematite crystal structure accommodates a trans-dioxo uranyl-like configuration for U6+ that substitutes for structural Fe3+, which requires two partially protonated Fe vacancies situated at opposing corner-sharing sites. Surprisingly, the best match to experiment included significant proportions of vacancy configurations other than the minimum-energy configuration, pointing to the importance of incorporation mechanisms and kinetics in determining the state of an impurity incorporated into a host phase under low temperature hydrothermal conditions.},
doi = {10.1021/acs.est.8b00297},
journal = {Environmental Science and Technology},
number = 11,
volume = 52,
place = {United States},
year = {Mon May 14 00:00:00 EDT 2018},
month = {Mon May 14 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.est.8b00297

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Local Structure and Energetic Details for U6+ Incorporated in Hematite from AIMD Calculations at 300 K

Save / Share:

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization
journal, April 1991


Nanopores in hematite ( -Fe2O3) nanocrystals observed by electron tomography
journal, December 2012

  • Echigo, T.; Monsegue, N.; Aruguete, D. M.
  • American Mineralogist, Vol. 98, Issue 1
  • DOI: 10.2138/am.2013.4120

First-principles study of the structural and isotopic properties of Al- and OH-bearing hematite
journal, July 2010

  • Blanchard, Marc; Morin, Guillaume; Lazzeri, Michele
  • Geochimica et Cosmochimica Acta, Vol. 74, Issue 14
  • DOI: 10.1016/j.gca.2010.04.018

Electrodeposition of α-Fe 2 O 3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting
journal, September 2008

  • Kleiman-Shwarsctein, Alan; Hu, Yong-Sheng; Forman, Arnold J.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 40
  • DOI: 10.1021/jp803775j

Adiabaticity in first-principles molecular dynamics
journal, April 1992


Trace Uranium Partitioning in a Multiphase Nano-FeOOH System
journal, April 2017

  • McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien
  • Environmental Science & Technology, Vol. 51, Issue 9
  • DOI: 10.1021/acs.est.7b00432

Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals
journal, November 2016


VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Reduction of U(VI) Incorporated in the Structure of Hematite
journal, August 2012

  • Ilton, Eugene S.; Pacheco, Juan S. Lezama; Bargar, John R.
  • Environmental Science & Technology, Vol. 46, Issue 17
  • DOI: 10.1021/es3015502

Structural Incorporation of As 5+ into Hematite
journal, August 2013

  • Bolanz, Ralph M.; Wierzbicka-Wieczorek, Maria; Čaplovičová, Mária
  • Environmental Science & Technology, Vol. 47, Issue 16
  • DOI: 10.1021/es305182c

Reduction of U(VI) by Fe(II) during the Fe(II)-Accelerated Transformation of Ferrihydrite
journal, July 2014

  • Boland, Daniel D.; Collins, Richard N.; Glover, Chris J.
  • Environmental Science & Technology, Vol. 48, Issue 16
  • DOI: 10.1021/es501750z

Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles
journal, February 2017

  • Pidchenko, Ivan; Kvashnina, Kristina O.; Yokosawa, Tadahiro
  • Environmental Science & Technology, Vol. 51, Issue 4
  • DOI: 10.1021/acs.est.6b04035

Parameter-free calculations of X-ray spectra with FEFF9
journal, January 2010

  • Rehr, John J.; Kas, Joshua J.; Vila, Fernando D.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 21
  • DOI: 10.1039/b926434e

Large-Scale Plane-Wave-Based Density Functional Theory: Formalism, Parallelization, and Applications
book, July 2011

  • Bylaska, Eric; Tsemekhman, Kiril; Govind, Niranjan
  • Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology
  • DOI: 10.1002/9780470930779.ch3

Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting
journal, December 2008

  • Cesar, Ilkay; Sivula, Kevin; Kay, Andreas
  • The Journal of Physical Chemistry C, Vol. 113, Issue 2
  • DOI: 10.1021/jp809060p

Spectroscopic Confirmation of Uranium(VI)−Carbonato Adsorption Complexes on Hematite
journal, July 1999

  • Bargar, John R.; Reitmeyer, Rebecca; Davis, James A.
  • Environmental Science & Technology, Vol. 33, Issue 14
  • DOI: 10.1021/es990048g

Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach
journal, April 2003

  • Muñoz, Manuel; Argoul, Pierre; Farges, François
  • American Mineralogist, Vol. 88, Issue 4
  • DOI: 10.2138/am-2003-0423

The effect of symmetry on the U L 3 NEXAFS of octahedral coordinated uranium( vi )
journal, March 2017

  • Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.
  • The Journal of Chemical Physics, Vol. 146, Issue 11
  • DOI: 10.1063/1.4978481

Uranium fate during crystallization of magnetite from ferrihydrite in conditions relevant to the disposal of radioactive waste
journal, November 2015


NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
journal, September 2010

  • Valiev, M.; Bylaska, E. J.; Govind, N.
  • Computer Physics Communications, Vol. 181, Issue 9, p. 1477-1489
  • DOI: 10.1016/j.cpc.2010.04.018

Unified Approach for Molecular Dynamics and Density-Functional Theory
journal, November 1985


Ab initio theory and calculations of X-ray spectra
journal, July 2009


Ab initio study of structurally bound water at cation vacancy sites in Fe- and Al-oxyhydroxide materials
journal, August 2013


Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH
journal, October 2017

  • Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.
  • Geochimica et Cosmochimica Acta, Vol. 215
  • DOI: 10.1016/j.gca.2017.07.013

Enrichment and Encapsulation of Uranium with Iron Nanoparticle
journal, February 2015

  • Ling, Lan; Zhang, Wei-xian
  • Journal of the American Chemical Society, Vol. 137, Issue 8
  • DOI: 10.1021/ja510488r

Uranium co-precipitation with iron oxide minerals
journal, October 2002

  • Duff, Martine C.; Coughlin, Jessica Urbanik; Hunter, Douglas B.
  • Geochimica et Cosmochimica Acta, Vol. 66, Issue 20
  • DOI: 10.1016/S0016-7037(02)00953-5

Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis
journal, August 2012

  • Liao, Peilin; Keith, John A.; Carter, Emily A.
  • Journal of the American Chemical Society, Vol. 134, Issue 32
  • DOI: 10.1021/ja301567f

Iron oxide formation from FeCl2 solutions in the presence of uranyl (UO22+) cations and carbonate rich media
journal, June 2015


Parallel implementation of γ-point pseudopotential plane-wave DFT with exact exchange
journal, November 2010

  • Bylaska, Eric J.; Tsemekhman, Kiril; Baden, Scott B.
  • Journal of Computational Chemistry, Vol. 32, Issue 1
  • DOI: 10.1002/jcc.21598

Sequestration of molybdate during transformation of 2-line ferrihydrite under alkaline conditions
journal, October 2016


Incorporation of Uranium into Hematite during Crystallization from Ferrihydrite
journal, March 2014

  • Marshall, Timothy A.; Morris, Katherine; Law, Gareth T. W.
  • Environmental Science & Technology, Vol. 48, Issue 7
  • DOI: 10.1021/es500212a

Probing the Nature of Chemical Bonding in Uranyl(VI) Complexes with Quantum Chemical Methods
journal, November 2012

  • Vallet, Valérie; Wahlgren, Ulf; Grenthe, Ingmar
  • The Journal of Physical Chemistry A, Vol. 116, Issue 50
  • DOI: 10.1021/jp3091123

Citrate Enhanced Uranyl Adsorption on Goethite: An EXAFS Analysis
journal, December 2001

  • Redden, George; Bargar, John; Bencheikh-Latmani, Rizlan
  • Journal of Colloid and Interface Science, Vol. 244, Issue 1
  • DOI: 10.1006/jcis.2001.7996

Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

The hydrogen-atom locations in the α and β forms of uranyl hydroxide
journal, October 1971

  • Taylor, J. C.; Hurst, H. J.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 27, Issue 10
  • DOI: 10.1107/S0567740871005259

A refined monoclinic structure for a variety of "hydrohematite"
journal, February 2015

  • Peterson, K. M.; Heaney, P. J.; Post, J. E.
  • American Mineralogist, Vol. 100, Issue 2-3
  • DOI: 10.2138/am-2015-4807

Comparison of bonding and charge density in δ U O 3 , γ U O 3 , and L a 6 U O 12
journal, November 2017


Incorporation of Oxidized Uranium into Fe (Hydr)oxides during Fe(II) Catalyzed Remineralization
journal, October 2009

  • Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott
  • Environmental Science & Technology, Vol. 43, Issue 19
  • DOI: 10.1021/es900515q

Surface complexation of U(VI) on goethite (α-FeOOH)
journal, January 2008

  • Sherman, David M.; Peacock, Caroline L.; Hubbard, Christopher G.
  • Geochimica et Cosmochimica Acta, Vol. 72, Issue 2
  • DOI: 10.1016/j.gca.2007.10.023

Stability of Uranium Incorporated into Fe (Hydr)oxides under Fluctuating Redox Conditions
journal, June 2009

  • Stewart, Brandy D.; Nico, Peter S.; Fendorf, Scott
  • Environmental Science & Technology, Vol. 43, Issue 13
  • DOI: 10.1021/es803317w

Electronic Structure and Bonding in Actinyl Ions and their Analogs
journal, May 2007

  • Denning, Robert G.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 20
  • DOI: 10.1021/jp071061n

Effect of Amorphous Fe(III) Oxide Transformation on the Fe(II)-Mediated Reduction of U(VI)
journal, February 2011

  • Boland, Daniel D.; Collins, Richard N.; Payne, Timothy E.
  • Environmental Science & Technology, Vol. 45, Issue 4
  • DOI: 10.1021/es101848a

Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids
journal, November 2006

  • Ulrich, Kai-Uwe; Rossberg, André; Foerstendorf, Harald
  • Geochimica et Cosmochimica Acta, Vol. 70, Issue 22
  • DOI: 10.1016/j.gca.2006.08.031

Atomistic Simulations of Uranium Incorporation into Iron (Hydr)Oxides
journal, April 2011

  • Kerisit, Sebastien; Felmy, Andrew R.; Ilton, Eugene S.
  • Environmental Science & Technology, Vol. 45, Issue 7
  • DOI: 10.1021/es1037639

Equatorial and apical solvent shells of the UO22+ ion
journal, March 2008

  • Nichols, Patrick; Bylaska, Eric J.; Schenter, Gregory K.
  • The Journal of Chemical Physics, Vol. 128, Issue 12
  • DOI: 10.1063/1.2884861

Theoretical approaches to x-ray absorption fine structure
journal, July 2000


Generalized norm-conserving pseudopotentials
journal, August 1989


Competing retention pathways of uranium upon reaction with Fe(II)
journal, October 2014

  • Massey, Michael S.; Lezama-Pacheco, Juan S.; Jones, Morris E.
  • Geochimica et Cosmochimica Acta, Vol. 142
  • DOI: 10.1016/j.gca.2014.07.016

First-principles calculation of the structure and magnetic phases of hematite
journal, April 2004


Uranium(V) Incorporation Mechanisms and Stability in Fe(II)/Fe(III) (oxyhydr)Oxides
journal, September 2017

  • Roberts, Hannah E.; Morris, Katherine; Law, Gareth T. W.
  • Environmental Science & Technology Letters, Vol. 4, Issue 10
  • DOI: 10.1021/acs.estlett.7b00348

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.