DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides

Abstract

Abstract We use a recently developed plasma-flow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t < 30 ms) at atmospheric pressures in the presence of excess oxygen. In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-Al 2 O 3 , UO 2 , and alpha-UO 3 ) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation.

Authors:
; ORCiD logo; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1459036
Alternate Identifier(s):
OSTI ID: 1463831
Report Number(s):
LLNL-JRNL-741152
Journal ID: ISSN 2045-2322; 10451; PII: 28674
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Published Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Name: Scientific Reports Journal Volume: 8 Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Koroglu, Batikan, Wagnon, Scott, Dai, Zurong, Crowhurst, Jonathan C., Armstrong, Michael R., Weisz, David, Mehl, Marco, Zaug, Joseph M., Radousky, Harry B., and Rose, Timothy P. Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides. United Kingdom: N. p., 2018. Web. doi:10.1038/s41598-018-28674-6.
Koroglu, Batikan, Wagnon, Scott, Dai, Zurong, Crowhurst, Jonathan C., Armstrong, Michael R., Weisz, David, Mehl, Marco, Zaug, Joseph M., Radousky, Harry B., & Rose, Timothy P. Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides. United Kingdom. https://doi.org/10.1038/s41598-018-28674-6
Koroglu, Batikan, Wagnon, Scott, Dai, Zurong, Crowhurst, Jonathan C., Armstrong, Michael R., Weisz, David, Mehl, Marco, Zaug, Joseph M., Radousky, Harry B., and Rose, Timothy P. Wed . "Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides". United Kingdom. https://doi.org/10.1038/s41598-018-28674-6.
@article{osti_1459036,
title = {Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides},
author = {Koroglu, Batikan and Wagnon, Scott and Dai, Zurong and Crowhurst, Jonathan C. and Armstrong, Michael R. and Weisz, David and Mehl, Marco and Zaug, Joseph M. and Radousky, Harry B. and Rose, Timothy P.},
abstractNote = {Abstract We use a recently developed plasma-flow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t < 30 ms) at atmospheric pressures in the presence of excess oxygen. In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-Al 2 O 3 , UO 2 , and alpha-UO 3 ) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation.},
doi = {10.1038/s41598-018-28674-6},
journal = {Scientific Reports},
number = 1,
volume = 8,
place = {United Kingdom},
year = {Wed Jul 11 00:00:00 EDT 2018},
month = {Wed Jul 11 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41598-018-28674-6

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene
journal, January 2017

  • Li, Yang; Zhou, Chong-Wen; Somers, Kieran P.
  • Proceedings of the Combustion Institute, Vol. 36, Issue 1
  • DOI: 10.1016/j.proci.2016.05.052

Chemical reactivity of uranium trioxide. Part 1.—Conversion to U 3 O 8 , UO 2 and UF 4
journal, January 1962


Gas phase synthesis of nanocrystalline materials
journal, January 1997


Detection of Uranium Using Laser-Induced Breakdown Spectroscopy
journal, November 2009

  • Chinni, Rosemarie C.; Cremers, David A.; Radziemski, Leon J.
  • Applied Spectroscopy, Vol. 63, Issue 11
  • DOI: 10.1366/000370209789806867

Carbothermic reduction of (UO3 + C) microspheres to (UO2 + C) microspheres
journal, February 1993


Nanostructured Oxides in Chemistry:  Characterization and Properties
journal, September 2004

  • Fernández-García, M.; Martínez-Arias, A.; Hanson, J. C.
  • Chemical Reviews, Vol. 104, Issue 9
  • DOI: 10.1021/cr030032f

Formation of 238 U 16 O and 238 U 18 O observed by time-resolved emission spectroscopy subsequent to laser ablation
journal, July 2017

  • Weisz, David G.; Crowhurst, Jonathan C.; Siekhaus, Wigbert J.
  • Applied Physics Letters, Vol. 111, Issue 3
  • DOI: 10.1063/1.4991824

Modelling of Carbon Tetrachloride Decomposition in Oxidative RF Thermal Plasma
journal, April 2006

  • Kovács, Tamás; Turányi, Tamás; Főglein, Katalin
  • Plasma Chemistry and Plasma Processing, Vol. 26, Issue 3
  • DOI: 10.1007/s11090-006-9003-9

Effect of particle size on combustion of aluminum particle dust in air
journal, January 2009


Formation of charged aggregates of Al2O3 nanoparticles by combustion of aluminum droplets in air
journal, July 2004


On the use of the line-to-continuum intensity ratio for determining the electron temperature in a high-pressure argon surface-microwave discharge
journal, June 1995


Spectroscopic studies of the several isomers of UO 3
conference, October 2013

  • Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.
  • SPIE Security + Defence, SPIE Proceedings
  • DOI: 10.1117/12.2029408

Uranium oxides investigated by X-ray absorption and emission spectroscopies
journal, May 2006


Correlation between properties of a solid sample and laser-induced plasma parameters
journal, October 2009

  • Labutin, Timur A.; Popov, Andrey M.; Lednev, Vasily N.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 64, Issue 10
  • DOI: 10.1016/j.sab.2009.07.033

Investigation of local thermodynamic equilibrium in laser-induced plasmas: Measurements of rotational and excitation temperatures at long time scales
journal, November 2014

  • Lam, Julien; Motto-Ros, Vincent; Misiak, Dimitri
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 101
  • DOI: 10.1016/j.sab.2014.07.013

Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures
journal, September 2017

  • Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.
  • Review of Scientific Instruments, Vol. 88, Issue 9
  • DOI: 10.1063/1.5001346

Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?
journal, January 2006


Vaporization and condensation of some refractory oxides in plasmas derived initially from argon in expanded dc arcs
journal, January 2001

  • Whyman, Derek
  • Physical Chemistry Chemical Physics, Vol. 3, Issue 7
  • DOI: 10.1039/b006749k

Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame
journal, September 2015


Inductively coupled plasma-mass spectrometry: insights through computer modeling
journal, January 2017

  • Bogaerts, Annemie; Aghaei, Maryam
  • Journal of Analytical Atomic Spectrometry, Vol. 32, Issue 2
  • DOI: 10.1039/C6JA00408C

Geometrical and magnetic structure of iron oxide clusters (FeO) for n> 10
journal, September 2017


Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review
journal, June 1998


Experimental determination of the temperature range of AlO molecular emission in laser-induced aluminum plasma in air
journal, September 2014

  • Bai, Xueshi; Motto-Ros, Vincent; Lei, Wenqi
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 99
  • DOI: 10.1016/j.sab.2014.07.004

Infrared spectra of matrix‐isolated uranium oxide species. I. The stretching region
journal, May 1973

  • Gabelnick, S. D.; Reedy, G. T.; Chasanov, M. G.
  • The Journal of Chemical Physics, Vol. 58, Issue 10
  • DOI: 10.1063/1.1679009

Internal population distribution of the B state of AlO formed by fast ion beam bombardment or laser ablation of an Al2O3 (Al) surface
journal, November 2000

  • Varenne, Olivier; Fournier, Paul-Guy; Fournier, Janine
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 171, Issue 3
  • DOI: 10.1016/S0168-583X(00)00262-7

[ηアルミナの作製とその結晶構造]<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1976-01-01">January 1976</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shirasuka, Kouhei; Yanagida, Hiroaki; Yamaguchi, Goro</span> </li> <li> Journal of the Ceramic Association, Japan, Vol. 84, Issue 976</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2109/jcersj1950.84.976_610" class="text-muted" target="_blank" rel="noopener noreferrer">10.2109/jcersj1950.84.976_610<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/1361-6463/aa92f5" target="_blank" rel="noopener noreferrer" class="name">A model of early formation of uranium molecular oxides in laser-ablated plasmas<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-11-06">November 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Finko, Mikhail S.; Curreli, Davide; Weisz, David G.</span> </li> <li> Journal of Physics D: Applied Physics, Vol. 50, Issue 48</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/1361-6463/aa92f5" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/1361-6463/aa92f5<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.proci.2010.05.027" target="_blank" rel="noopener noreferrer" class="name">Kinetic modeling of gasoline surrogate components and mixtures under engine conditions<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2011-01-01">January 2011</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mehl, Marco; Pitz, William J.; Westbrook, Charles K.</span> </li> <li> Proceedings of the Combustion Institute, Vol. 33, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.proci.2010.05.027" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.proci.2010.05.027<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.saa.2011.06.029" target="_blank" rel="noopener noreferrer" class="name">Computation of AlO B2Σ+→X2Σ+ emission spectra<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2011-10-01">October 2011</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Parigger, Christian G.; Hornkohl, James O.</span> </li> <li> Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 81, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.saa.2011.06.029" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.saa.2011.06.029<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.2018632" target="_blank" rel="noopener noreferrer" class="name">Kinetics of ion-induced nucleation in a vapor-gas mixture<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-09-08">September 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Fisenko, Sergey P.; Kane, David B.; El-Shall, M. Samy</span> </li> <li> The Journal of Chemical Physics, Vol. 123, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.2018632" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.2018632<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1366/12-06830" target="_blank" rel="noopener noreferrer" class="name">Analysis and Spectral Assignments of Mixed Actinide Oxide Samples Using Laser-Induced Breakdown Spectroscopy (LIBS)<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-04-01">April 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Barefield, James E.; Judge, Elizabeth J.; Berg, John M.</span> </li> <li> Applied Spectroscopy, Vol. 67, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1366/12-06830" class="text-muted" target="_blank" rel="noopener noreferrer">10.1366/12-06830<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/science.1149034" target="_blank" rel="noopener noreferrer" class="name">Heterogeneous Nucleation Experiments Bridging the Scale from Molecular Ion Clusters to Nanoparticles<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-03-07">March 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Winkler, P. M.; Steiner, G.; Vrtala, A.</span> </li> <li> Science, Vol. 319, Issue 5868</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/science.1149034" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/science.1149034<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0031-8949/88/05/058307" target="_blank" rel="noopener noreferrer" class="name">Theoretical study of structure and physical properties of (Al <sub>2</sub> O <sub>3</sub> ) <sub> <em>n</em> </sub> clusters<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-10-29">October 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sharipov, A. S.; Loukhovitski, B. I.; Starik, A. M.</span> </li> <li> Physica Scripta, Vol. 88, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0031-8949/88/05/058307" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0031-8949/88/05/058307<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1366/0003702001951057" target="_blank" rel="noopener noreferrer" class="name">Characterization of Uranium Oxides Using <em>in Situ</em> Micro-Raman Spectroscopy<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2000-09-01">September 2000</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Palacios, M. Luisa; Taylor, Stuart H.</span> </li> <li> Applied Spectroscopy, Vol. 54, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1366/0003702001951057" class="text-muted" target="_blank" rel="noopener noreferrer">10.1366/0003702001951057<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.sab.2015.02.018" target="_blank" rel="noopener noreferrer" class="name">Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-05-01">May 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Parigger, Christian G.; Woods, Alexander C.; Surmick, David M.</span> </li> <li> Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 107</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.sab.2015.02.018" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.sab.2015.02.018<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.sab.2013.09.001" target="_blank" rel="noopener noreferrer" class="name">Multiple emission line analysis for improved isotopic determination of uranium — a computer simulation study<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-11-01">November 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Chan, George C. -Y.; Mao, Xianglei; Choi, Inhee</span> </li> <li> Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 89</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.sab.2013.09.001" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.sab.2013.09.001<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1111/j.1551-2916.2004.01701.x" target="_blank" rel="noopener noreferrer" class="name">Alumina Volatility in Water Vapor at Elevated Temperatures<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2004-09-01">September 2004</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Opila, Elizabeth J.; Myers, Dwight L.</span> </li> <li> Journal of the American Ceramic Society, Vol. 87, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1111/j.1551-2916.2004.01701.x" class="text-muted" target="_blank" rel="noopener noreferrer">10.1111/j.1551-2916.2004.01701.x<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevB.71.184106" target="_blank" rel="noopener noreferrer" class="name">Vibrational spectroscopy of <math display="inline"> <mrow> <mi>Fe</mi> <mrow> <msub> <mrow> <mo>(</mo> <mi>OH</mi> <mo>)</mo> </mrow> <mn>2</mn> </msub> </mrow> </mrow> </math> at high pressure: Behavior of the O-H bond<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-05-01">May 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Speziale, Sergio; Jeanloz, Raymond; Milner, Alla</span> </li> <li> Physical Review B, Vol. 71, Issue 18</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevB.71.184106" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevB.71.184106<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1080/02786829708965459" target="_blank" rel="noopener noreferrer" class="name">Simultaneous Particle and Molecule Modeling (SPAMM): An Approach for Combining Sectional Aerosol Equations and Elementary Gas-Phase Reactions<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1997-01-01">January 1997</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Pope, Christopher J.; Howard, Jack B.</span> </li> <li> Aerosol Science and Technology, Vol. 27, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1080/02786829708965459" class="text-muted" target="_blank" rel="noopener noreferrer">10.1080/02786829708965459<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/srep43852" target="_blank" rel="noopener noreferrer" class="name">Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-03-08">March 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor</span> </li> <li> Scientific Reports, Vol. 7, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/srep43852" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/srep43852<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1366/13-07066" target="_blank" rel="noopener noreferrer" class="name">Line Selection and Parameter Optimization for Trace Analysis of Uranium in Glass Matrices by Laser-Induced Breakdown Spectroscopy (LIBS)<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-11-01">November 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Choi, Inhee; Chan, George C. -Y.; Mao, Xianglei</span> </li> <li> Applied Spectroscopy, Vol. 67, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1366/13-07066" class="text-muted" target="_blank" rel="noopener noreferrer">10.1366/13-07066<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/jp066579q" target="_blank" rel="noopener noreferrer" class="name">Detailed Kinetic Modeling of Iron Nanoparticle Synthesis from the Decomposition of Fe(CO) <sub>5</sub><span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-04-01">April 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wen, John Z.; Goldsmith, C. Franklin; Ashcraft, Robert W.</span> </li> <li> The Journal of Physical Chemistry C, Vol. 111, Issue 15</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/jp066579q" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/jp066579q<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0584-8547(92)80072-O" target="_blank" rel="noopener noreferrer" class="name">Isocontour maps of electron temperature, electron number density and gas kinetic temperature in the Ar inductively coupled plasma obtained by laser-light Thomson and Rayleigh scattering<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1992-06-01">June 1992</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Huang, Mao; Hanselman, D. S.; Yang, Pengyuan</span> </li> <li> Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 47, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0584-8547(92)80072-O" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0584-8547(92)80072-O<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s11090-004-8837-2" target="_blank" rel="noopener noreferrer" class="name">Kinetic Modeling of the Decomposition of Carbon Tetrachloride in Thermal Plasma<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-04-01">April 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kov�cs, Tam�s; Tur�nyi, Tam�s; F�glein, Katalin</span> </li> <li> Plasma Chemistry and Plasma Processing, Vol. 25, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s11090-004-8837-2" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s11090-004-8837-2<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.sab.2015.12.006" target="_blank" rel="noopener noreferrer" class="name">Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-02-01">February 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor</span> </li> <li> Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 116</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.sab.2015.12.006" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.sab.2015.12.006<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0009-2614(73)87070-8" target="_blank" rel="noopener noreferrer" class="name">The infrared spectrum of matrix-isolated uranium oxide vapor species<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1973-01-01">January 1973</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Gabelnick, S. D.; Reedy, G. T.; Chasanov, M. G.</span> </li> <li> Chemical Physics Letters, Vol. 19, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0009-2614(73)87070-8" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0009-2614(73)87070-8<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1366/000370294775268893" target="_blank" rel="noopener noreferrer" class="name">Characterization of Binary Uranium Oxides by Infrared Spectroscopy<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1994-04-01">April 1994</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Allen, Geoffrey C.; Holmes, Nigel R.</span> </li> <li> Applied Spectroscopy, Vol. 48, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1366/000370294775268893" class="text-muted" target="_blank" rel="noopener noreferrer">10.1366/000370294775268893<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.sab.2015.05.011" target="_blank" rel="noopener noreferrer" class="name">Boron- and iron-bearing molecules in laser-induced plasma<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-08-01">August 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Gaft, M.; Nagli, L.; Eliezer, N.</span> </li> <li> Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 110</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.sab.2015.05.011" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.sab.2015.05.011<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.1762015" target="_blank" rel="noopener noreferrer" class="name">Condensation and Electrical Conduction in Metallic Vapors<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1967-01-01">January 1967</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Solbes, Albert</span> </li> <li> Physics of Fluids, Vol. 10, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.1762015" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.1762015<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="conference"><span class="fa fa-angle-right"></span> conference<small class="text-muted"> (1)</small></a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (48)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1656961-experimental-investigation-uranium-volatility-during-vapor-condensation" itemprop="url">Experimental Investigation of Uranium Volatility during Vapor Condensation</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Koroglu, Batikan</span> ; <span class="author">Dai, Zurong</span> ; <span class="author">Finko, Mikhail</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Analytical Chemistry</span> </span> </div> <div class="abstract">The predictive models that describe the fate and transport of radioactive materials in the atmosphere following a nuclear incident (explosion or reactor accident) assume that uranium-bearing particulates would attain chemical equilibrium during vapor condensation. Here, we show that kinetically driven processes in a system of rapidly decreasing temperature can result in substantial deviations from chemical equilibrium. This can cause uranium to condense out in oxidation states (e.g., UO<sub>3</sub> vs UO<sub>2</sub>) that have different vapor pressures, significantly affecting uranium transport. To demonstrate this, we synthesized uranium oxide nanoparticles using a flow reactor under controlled conditions of temperature, pressure, and oxygen concentration.<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> The atomized chemical reactants passing through an inductively coupled plasma cool from ~5000 to 1000 K within milliseconds and form nanoparticles inside a flow reactor. The ex situ analysis of particulates by transmission electron microscopy revealed 2–10 nm crystallites of fcc-UO<sub>2</sub> or α-UO<sub>3</sub> depending on the amount of oxygen in the system. α-UO<sub>3</sub> is the least thermodynamically preferred polymorph of UO<sub>3</sub>. The absence of stable uranium oxides with intermediate stoichiometries (e.g., U<sub>3</sub>O<sub>8</sub>) and sensitivity of the uranium oxidation states to local redox conditions highlight the importance of in situ measurements at high temperatures. Therefore, we developed a laser-based diagnostic to detect uranium oxide particles as they are formed inside the flow reactor. Our in situ measurements allowed us to quantify the changes in the number densities of the uranium oxide nanoparticles (e.g., UO<sub>3</sub>) as a function of oxygen gas concentration. Our results indicate that uranium can prefer to be in metastable crystal forms (i.e., α-UO<sub>3</sub>) that have higher vapor pressures than the refractory form (i.e., UO<sub>2</sub>) depending on the oxygen abundance in the surrounding environment. This demonstrates that the equilibrium processes may not dominate during rapid condensation processes, and thus kinetic models are required to fully describe uranium transport subsequent to nuclear incidents.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 11<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1021/acs.analchem.9b05562" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1656961" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1021/acs.analchem.9b05562</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1656961" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1656961" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1897689-vapor-phase-aggregation-cerium-oxide-nanoparticles-rapidly-cooling-plasma" itemprop="url">Vapor-Phase Aggregation of Cerium Oxide Nanoparticles in a Rapidly Cooling Plasma</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Rodriguez, Kate</span> ; <span class="author">Koroglu, Batikan</span> ; <span class="author">Hammons, Joshua</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - ACS Earth and Space Chemistry</span> </span> </div> <div class="abstract">Local conditions, such as temperature and oxygen availability, have a pronounced effect on the formation and evolution of fallout following a nuclear explosion. While the behavior of nuclear-relevant materials such as uranium has begun to be explored under a wider range of environments, little is known about the behavior of plutonium. Here, using cerium as a surrogate, we track the vapor-phase aggregation of cerium oxide nanoparticles created in a plasma flow reactor under conditions of controlled temperature at two different oxygen fugacities. In situ optical emission spectroscopy is used to measure the variations in the spectral intensity of atomic and<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> molecular species with temperature and oxygen content. We find that the relative rate of gas-phase oxidation of cerium is highly dependent on both temperature and local redox conditions within the flow reactor, to the extent that doubling the oxygen availability effectively doubles the amount of vapor-phase cerium monoxide at high temperatures (>2000 K). Condensed cerium oxide nanoparticles are also collected and analyzed ex situ via transmission electron microscopy and grazing-incidence small-angle X-ray scattering to determine their elemental composition, crystal structure, and size distribution. The size and morphology of the condensed nanoparticles are independent of local redox conditions, forming the same crystal type with the same size distribution regardless of oxygen availability. Postcondensation particle evolution, however, is found to be predominantly driven by temperature, with the average particle size increasing as particles cool and subsequently aggregate. These results expand our understanding of the chemical and physical behavior of refractory oxides that form during the early stages of fallout formation.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1021/acsearthspacechem.2c00073" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1897689" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1021/acsearthspacechem.2c00073</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1897689" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1897689" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/2005042-influence-cooling-rate-condensation-iron-aluminum-uranium-oxide-nanoparticles" itemprop="url">The influence of cooling rate on condensation of iron, aluminum, and uranium oxide nanoparticles</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Koroglu, Batikan</span> ; <span class="author">Finko, Mikhail</span> ; <span class="author">Saggese, Chiara</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of Aerosol Science</span> </span> </div> <div class="abstract">Fundamental observations of particle size distributions are needed to develop models that predict the fate and transport of radioactive materials in the atmosphere following a nuclear incident. The extent of material transport is influenced by the time scales of particle formation processes (e.g., condensation, coagulation). In this study, we investigated the influence of cooling time scales on size distributions of uranium, aluminum, and iron oxide particles that are synthesized separately under identical run conditions inside the controlled environment of an argon plasma flow reactor. Two distinct temperature distributions are imposed along the flow reactor by varying the argon flow rate<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> downstream of the plasma torch. The vaporized reactants of uranium, aluminum, and iron are cooled from about 5000K to 1000K before they are collected on silicon wafers for ex situ scanning electron microscope analysis. The microscope images show that the sizes of the largest aluminum and iron oxide particles heavily depend on the cooling time scales, whereas significant size variation with cooling rate is not observed for uranium oxide particles. In addition, the size distribution of aluminum oxide particles exhibits the broadest range among all three metal oxides studied. We performed simulations of particle size distributions using a kinetic model that couples gas phase oxidation chemistry with particle formation processes, including nucleation, condensation, and coagulation. The model results demonstrate the strong sensitivity of particle size distribution to different cooling histories (i.e., temperature vs residence time) along the flow reactor. In conclusion, the kinetic model also helps identify directions for future research to improve the predictions.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1016/j.jaerosci.2022.105959" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="2005042" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1016/j.jaerosci.2022.105959</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/2005042" title="Link to document media" target="_blank" rel="noopener" data-ostiid="2005042" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="5" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1882239-synthesis-stability-eightcoordinated-fe-highpressure-phase-implications-mantle-structure-superearths" itemprop="url">Synthesis and Stability of an Eight‐Coordinated Fe <sub>3</sub> O <sub>4</sub> High‐Pressure Phase: Implications for the Mantle Structure of Super‐Earths</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Zurkowski, C. C.</span> ; <span class="author">Yang, J.</span> ; <span class="author">Chariton, S.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of Geophysical Research. Planets</span> </span> </div> <div class="abstract">Abstract Super‐Earths ranging up to 10 Earth masses (M <sub>E</sub> ) with Earth‐like density are common among the observed exoplanets thus far, but their measured masses and radii do not uniquely elucidate their internal structure. Exploring the phase transitions in the Mg‐silicates that define the mantle‐structure of super‐Earths is critical to characterizing their interiors, yet the relevant terapascal conditions are experimentally challenging for direct structural analysis. Here we investigated the crystal chemistry of Fe <sub>3</sub> O <sub>4</sub> as a low‐pressure analog to Mg <sub>2</sub> SiO <sub>4</sub> between 45–115 GPa and up to 3000 K using powder and single crystal X‐ray diffraction in<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the laser‐heated diamond anvil cell. Between 60–115 GPa and above 2000 K, Fe <sub>3</sub> O <sub>4</sub> adopts an 8‐fold coordinated Th <sub>3</sub> P <sub>4</sub> ‐type structure ( I ‐43d, Z  = 4) with disordered Fe <sup>2+</sup> and Fe <sup>3+</sup> into one metal site. This Fe‐oxide phase is isostructural with that predicted for Mg <sub>2</sub> SiO <sub>4</sub> above 500 GPa in super‐Earth mantles and suggests that Mg <sub>2</sub> SiO <sub>4</sub> can incorporate both ferric and ferrous iron at these conditions. The pressure‐volume behavior observed in this 8‐fold coordinated Fe <sub>3</sub> O <sub>4</sub> indicates a maximum 4% density increase across the 6‐ to 8‐fold coordination transition in the analog Mg‐silicate. Reassessment of the FeO—Fe <sub>3</sub> O <sub>4</sub> fugacity buffer considering the Fe <sub>3</sub> O <sub>4</sub> phase relationships identified in this study reveals that increasing pressure and temperature to 120 GPa and 3000 K in Earth and planetary mantles drives iron toward oxidation.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1029/2022JE007344" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1882239" data-product-type="Journal Article" data-product-subtype="PA" >https://doi.org/10.1029/2022JE007344</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="6" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1894772-hyperstoichiometric-uranium-dioxides-rapid-synthesis-irradiation-induced-structural-changes" itemprop="url">Hyperstoichiometric Uranium Dioxides: Rapid Synthesis and Irradiation-Induced Structural Changes</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Roach, Jordan M.</span> ; <span class="author">Manukyan, Khachatur V.</span> ; <span class="author">Majumdar, Ashabari</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Inorganic Chemistry</span> </span> </div> <div class="abstract">Uranium dioxide (UO<sub>2</sub>), the primary fuel for commercial nuclear reactors, incorporates excess oxygen forming a series of hyperstoichiometric oxides. Thin layers of these oxides, such as UO<sub>2.12</sub>, form readily on the fuel surface and influence its properties, performance, and potentially geologic disposal. This work reports a rapid and straightforward combustion process in uranyl nitrate–glycine–water solutions to prepare UO<sub>2.12</sub> nanomaterials and thin films. We also report on the investigation of the structural changes induced in the material by irradiation. Despite the simple processing aspects, the combustion synthesis of UO<sub>2.12</sub> has a sophisticated chemical mechanism involving several exothermic steps. Raman spectroscopy and<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> single-crystal X-ray diffraction (XRD) measurements reveal the formation of a complex compound containing the uranyl moiety, glycine, H<sub>2</sub>O, and NO<sub>3</sub><sup>–</sup> groups in reactive solutions and dried combustion precursors. Combustion diagnostic methods, gas-phase mass spectroscopy, differential scanning calorimetry (DSC), and extracted activation energies from DSC measurements show that the rate-limiting step of the process is the reaction of ammonia with nitrogen oxides formed from the decomposition of glycine and uranyl nitrate, respectively. However, the exothermic decomposition of the complex compound determines the maximum temperature of the process. In situ transmission electron microscopy (TEM) imaging and electron diffraction measurements show that the decomposition of the complex compound directly produces UO<sub>2</sub>. The incorporation of oxygen at the cooling stage of the combustion process is responsible for the formation of UO<sub>2.12</sub>. Spin coating of the solutions and brief annealing at 670 K allow the deposition of uniform films of UO<sub>2.12</sub> with thicknesses up to 300 nm on an aluminum substrate. Irradiation of films with Ar<sup>2+</sup> ions (1.7 MeV energy, a fluence of up to 1 × 10<sup>17</sup> ions/cm<sup>2</sup>) shows unusual defect-simulated grain growth and enhanced chemical mixing of UO<sub>2.12</sub> with the substrate due to the high uranium ion diffusion in films. As a result, the method described in this work allows the preparation of actinide oxide targets for fundamental nuclear science research and studies associated with stockpile stewardship.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1021/acs.inorgchem.1c02736" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1894772" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1021/acs.inorgchem.1c02736</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1894772" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1894772" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>